Conversion to NinjaRig.

This commit is contained in:
Haifa Bogdan Adnan 2019-08-26 12:38:34 +03:00
parent 84f56f0a4e
commit 2845347881
280 changed files with 18971 additions and 32469 deletions

View file

@ -0,0 +1,353 @@
#define BLOCK_BYTES 32
#define OUT_BYTES 16
#define BLAKE_SHARED_MEM 480
#define BLAKE_SHARED_MEM_UINT 120
#define G(m, r, i, a, b, c, d) \
do { \
a = a + b + m[blake2b_sigma[r][2 * i + 0]]; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b + m[blake2b_sigma[r][2 * i + 1]]; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define G_S(m, a, b, c, d) \
do { \
a = a + b + m; \
d = rotr64(d ^ a, 32); \
c = c + d; \
b = rotr64(b ^ c, 24); \
a = a + b + m; \
d = rotr64(d ^ a, 16); \
c = c + d; \
b = rotr64(b ^ c, 63); \
} while ((void)0, 0)
#define ROUND(m, t, r) \
do { \
G(m, r, t, v0, v1, v2, v3); \
v1 = __shfl_sync(0xFFFFFFFF, v1, t + 1, 4); \
v2 = __shfl_sync(0xFFFFFFFF, v2, t + 2, 4); \
v3 = __shfl_sync(0xFFFFFFFF, v3, t + 3, 4); \
G(m, r, (t + 4), v0, v1, v2, v3); \
v1 = __shfl_sync(0xFFFFFFFF, v1, t + 3, 4); \
v2 = __shfl_sync(0xFFFFFFFF, v2, t + 2, 4); \
v3 = __shfl_sync(0xFFFFFFFF, v3, t + 1, 4); \
} while ((void)0, 0)
#define ROUND_S(m, t) \
do { \
G_S(m, v0, v1, v2, v3); \
v1 = __shfl_sync(0xFFFFFFFF, v1, t + 1, 4); \
v2 = __shfl_sync(0xFFFFFFFF, v2, t + 2, 4); \
v3 = __shfl_sync(0xFFFFFFFF, v3, t + 3, 4); \
G_S(m, v0, v1, v2, v3); \
v1 = __shfl_sync(0xFFFFFFFF, v1, t + 3, 4); \
v2 = __shfl_sync(0xFFFFFFFF, v2, t + 2, 4); \
v3 = __shfl_sync(0xFFFFFFFF, v3, t + 1, 4); \
} while ((void)0, 0)
__constant__ uint64_t blake2b_IV[8] = {
0x6A09E667F3BCC908, 0xBB67AE8584CAA73B,
0x3C6EF372FE94F82B, 0xA54FF53A5F1D36F1,
0x510E527FADE682D1, 0x9B05688C2B3E6C1F,
0x1F83D9ABFB41BD6B, 0x5BE0CD19137E2179
};
__constant__ uint32_t blake2b_sigma[12][16] = {
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
{11, 8, 12, 0, 5, 2, 15, 13, 10, 14, 3, 6, 7, 1, 9, 4},
{7, 9, 3, 1, 13, 12, 11, 14, 2, 6, 5, 10, 4, 0, 15, 8},
{9, 0, 5, 7, 2, 4, 10, 15, 14, 1, 11, 12, 6, 8, 3, 13},
{2, 12, 6, 10, 0, 11, 8, 3, 4, 13, 7, 5, 15, 14, 1, 9},
{12, 5, 1, 15, 14, 13, 4, 10, 0, 7, 6, 3, 9, 2, 8, 11},
{13, 11, 7, 14, 12, 1, 3, 9, 5, 0, 15, 4, 8, 6, 2, 10},
{6, 15, 14, 9, 11, 3, 0, 8, 12, 2, 13, 7, 1, 4, 10, 5},
{10, 2, 8, 4, 7, 6, 1, 5, 15, 11, 9, 14, 3, 12, 13, 0},
{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15},
{14, 10, 4, 8, 9, 15, 13, 6, 1, 12, 0, 2, 11, 7, 5, 3},
};
__device__ uint64_t rotr64(uint64_t x, uint32_t n)
{
return (x >> n) | (x << (64 - n));
}
__device__ __forceinline__ void blake2b_compress(uint64_t *h, uint64_t *m, uint64_t f0, int thr_id)
{
uint64_t v0, v1, v2, v3;
v0 = h[thr_id];
v1 = h[thr_id + 4];
v2 = blake2b_IV[thr_id];
v3 = blake2b_IV[thr_id + 4];
if(thr_id == 0) v3 ^= h[8];
if(thr_id == 1) v3 ^= h[9];
if(thr_id == 2) v3 ^= f0;
ROUND(m, thr_id, 0);
ROUND(m, thr_id, 1);
ROUND(m, thr_id, 2);
ROUND(m, thr_id, 3);
ROUND(m, thr_id, 4);
ROUND(m, thr_id, 5);
ROUND(m, thr_id, 6);
ROUND(m, thr_id, 7);
ROUND(m, thr_id, 8);
ROUND(m, thr_id, 9);
ROUND(m, thr_id, 10);
ROUND(m, thr_id, 11);
h[thr_id] ^= v0 ^ v2;
h[thr_id + 4] ^= v1 ^ v3;
}
__device__ __forceinline__ void blake2b_compress_static(uint64_t *h, uint64_t m, uint64_t f0, int thr_id)
{
uint64_t v0, v1, v2, v3;
v0 = h[thr_id];
v1 = h[thr_id + 4];
v2 = blake2b_IV[thr_id];
v3 = blake2b_IV[thr_id + 4];
if(thr_id == 0) v3 ^= h[8];
if(thr_id == 1) v3 ^= h[9];
if(thr_id == 2) v3 ^= f0;
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
ROUND_S(m, thr_id);
h[thr_id] ^= v0 ^ v2;
h[thr_id + 4] ^= v1 ^ v3;
}
__device__ __forceinline__ int blake2b_init(uint64_t *h, int out_len, int thr_id)
{
h[thr_id * 2] = blake2b_IV[thr_id * 2];
h[thr_id * 2 + 1] = blake2b_IV[thr_id * 2 + 1];
if(thr_id == 0) {
h[8] = h[9] = 0;
h[0] = 0x6A09E667F3BCC908 ^ ((out_len * 4) | (1 << 16) | (1 << 24));
}
return 0;
}
__device__ __forceinline__ void blake2b_incrementCounter(uint64_t *h, int inc)
{
h[8] += (inc * 4);
h[9] += (h[8] < (inc * 4));
}
__device__ __forceinline__ int blake2b_update(uint32_t *in, int in_len, uint64_t *h, uint32_t *buf, int buf_len, int thr_id)
{
uint32_t *cursor_in = in;
uint32_t *cursor_out = buf + buf_len;
if (buf_len + in_len > BLOCK_BYTES) {
int left = BLOCK_BYTES - buf_len;
for(int i=0; i < (left >> 2); i++, cursor_in += 4, cursor_out += 4) {
cursor_out[thr_id] = cursor_in[thr_id];
}
if(thr_id == 0) {
for (int i = 0; i < (left % 4); i++) {
cursor_out[i] = cursor_in[i];
}
blake2b_incrementCounter(h, BLOCK_BYTES);
}
blake2b_compress(h, (uint64_t*)buf, 0, thr_id);
buf_len = 0;
in_len -= left;
in += left;
while (in_len > BLOCK_BYTES) {
if(thr_id == 0)
blake2b_incrementCounter(h, BLOCK_BYTES);
cursor_in = in;
cursor_out = buf;
for(int i=0; i < (BLOCK_BYTES / 4); i++, cursor_in += 4, cursor_out += 4) {
cursor_out[thr_id] = cursor_in[thr_id];
}
blake2b_compress(h, (uint64_t *)buf, 0, thr_id);
in_len -= BLOCK_BYTES;
in += BLOCK_BYTES;
}
}
cursor_in = in;
cursor_out = buf + buf_len;
for(int i=0; i < (in_len >> 2); i++, cursor_in += 4, cursor_out += 4) {
cursor_out[thr_id] = cursor_in[thr_id];
}
if(thr_id == 0) {
for (int i = 0; i < (in_len % 4); i++) {
cursor_out[i] = cursor_in[i];
}
}
return buf_len + in_len;
}
__device__ __forceinline__ int blake2b_update_static(uint32_t in, int in_len, uint64_t *h, uint32_t *buf, int buf_len, int thr_id)
{
uint64_t in64 = in;
in64 = in64 << 32;
in64 = in64 | in;
uint32_t *cursor_out = buf + buf_len;
if (buf_len + in_len > BLOCK_BYTES) {
int left = BLOCK_BYTES - buf_len;
for(int i=0; i < (left >> 2); i++, cursor_out += 4) {
cursor_out[thr_id] = in;
}
if(thr_id == 0) {
for (int i = 0; i < (left % 4); i++) {
cursor_out[i] = in;
}
blake2b_incrementCounter(h, BLOCK_BYTES);
}
blake2b_compress(h, (uint64_t*)buf, 0, thr_id);
buf_len = 0;
in_len -= left;
while (in_len > BLOCK_BYTES) {
if(thr_id == 0)
blake2b_incrementCounter(h, BLOCK_BYTES);
blake2b_compress_static(h, in64, 0, thr_id);
in_len -= BLOCK_BYTES;
}
}
cursor_out = buf + buf_len;
for(int i=0; i < (in_len >> 2); i++, cursor_out += 4) {
cursor_out[thr_id] = in;
}
if(thr_id == 0) {
for (int i = 0; i < (in_len % 4); i++) {
cursor_out[i] = in;
}
}
return buf_len + in_len;
}
__device__ __forceinline__ void blake2b_final(uint32_t *out, int out_len, uint64_t *h, uint32_t *buf, int buf_len, int thr_id)
{
int left = BLOCK_BYTES - buf_len;
uint32_t *cursor_out = buf + buf_len;
for(int i=0; i < (left >> 2); i++, cursor_out += 4) {
cursor_out[thr_id] = 0;
}
if(thr_id == 0) {
for (int i = 0; i < (left % 4); i++) {
cursor_out[i] = 0;
}
blake2b_incrementCounter(h, buf_len);
}
blake2b_compress(h, (uint64_t*)buf, 0xFFFFFFFFFFFFFFFF, thr_id);
uint32_t *cursor_in = (uint32_t *)h;
cursor_out = out;
for(int i=0; i < (out_len >> 2); i++, cursor_in += 4, cursor_out += 4) {
cursor_out[thr_id] = cursor_in[thr_id];
}
if(thr_id == 0) {
for (int i = 0; i < (out_len % 4); i++) {
cursor_out[i] = cursor_in[i];
}
}
}
__device__ void blake2b_digestLong(uint32_t *out, int out_len, uint32_t *in, int in_len, int thr_id, uint32_t *shared)
{
uint64_t *h = (uint64_t*)shared;
uint32_t *buf = (uint32_t*)&h[10];
uint32_t *out_buffer = &buf[32];
int buf_len;
if(thr_id == 0) buf[0] = (out_len * 4);
buf_len = 1;
if (out_len <= OUT_BYTES) {
blake2b_init(h, out_len, thr_id);
buf_len = blake2b_update(in, in_len, h, buf, buf_len, thr_id);
blake2b_final(out, out_len, h, buf, buf_len, thr_id);
} else {
uint32_t *cursor_in = out_buffer;
uint32_t *cursor_out = out;
blake2b_init(h, OUT_BYTES, thr_id);
buf_len = blake2b_update(in, in_len, h, buf, buf_len, thr_id);
blake2b_final(out_buffer, OUT_BYTES, h, buf, buf_len, thr_id);
for(int i=0; i < (OUT_BYTES / 8); i++, cursor_in += 4, cursor_out += 4) {
cursor_out[thr_id] = cursor_in[thr_id];
}
out += OUT_BYTES / 2;
int to_produce = out_len - OUT_BYTES / 2;
while (to_produce > OUT_BYTES) {
buf_len = blake2b_init(h, OUT_BYTES, thr_id);
buf_len = blake2b_update(out_buffer, OUT_BYTES, h, buf, buf_len, thr_id);
blake2b_final(out_buffer, OUT_BYTES, h, buf, buf_len, thr_id);
cursor_out = out;
cursor_in = out_buffer;
for(int i=0; i < (OUT_BYTES / 8); i++, cursor_in += 4, cursor_out += 4) {
cursor_out[thr_id] = cursor_in[thr_id];
}
out += OUT_BYTES / 2;
to_produce -= OUT_BYTES / 2;
}
buf_len = blake2b_init(h, to_produce, thr_id);
buf_len = blake2b_update(out_buffer, OUT_BYTES, h, buf, buf_len, thr_id);
blake2b_final(out, to_produce, h, buf, buf_len, thr_id);
}
}

View file

@ -0,0 +1,340 @@
//
// Created by Haifa Bogdan Adnan on 03/08/2018.
//
#include <crypto/Argon2_constants.h>
#include "../../../common/common.h"
#include "crypto/argon2_hasher/hash/Hasher.h"
#include "crypto/argon2_hasher/hash/argon2/Argon2.h"
#if defined(WITH_CUDA)
#include <cuda_runtime.h>
#include <driver_types.h>
#include "cuda_hasher.h"
#include "../../../common/DLLExport.h"
cuda_hasher::cuda_hasher() {
m_type = "GPU";
m_subType = "CUDA";
m_shortSubType = "NVD";
m_intensity = 0;
m_description = "";
m_computingThreads = 0;
}
cuda_hasher::~cuda_hasher() {
this->cleanup();
}
bool cuda_hasher::initialize(xmrig::Algo algorithm, xmrig::Variant variant) {
cudaError_t error = cudaSuccess;
string error_message;
m_profile = getArgon2Profile(algorithm, variant);
__devices = __query_cuda_devices(error, error_message);
if(error != cudaSuccess) {
m_description = "No compatible GPU detected: " + error_message;
return false;
}
if (__devices.empty()) {
m_description = "No compatible GPU detected.";
return false;
}
return true;
}
vector<cuda_device_info *> cuda_hasher::__query_cuda_devices(cudaError_t &error, string &error_message) {
vector<cuda_device_info *> devices;
int devCount = 0;
error = cudaGetDeviceCount(&devCount);
if(error != cudaSuccess) {
error_message = "Error querying CUDA device count.";
return devices;
}
if(devCount == 0)
return devices;
for (int i = 0; i < devCount; ++i)
{
cuda_device_info *dev = __get_device_info(i);
if(dev == NULL)
continue;
if(dev->error != cudaSuccess) {
error = dev->error;
error_message = dev->error_message;
continue;
}
devices.push_back(dev);
}
return devices;
}
cuda_device_info *cuda_hasher::__get_device_info(int device_index) {
cuda_device_info *device_info = new cuda_device_info();
device_info->error = cudaSuccess;
device_info->cuda_index = device_index;
device_info->error = cudaSetDevice(device_index);
if(device_info->error != cudaSuccess) {
device_info->error_message = "Error setting current device.";
return device_info;
}
cudaDeviceProp devProp;
device_info->error = cudaGetDeviceProperties(&devProp, device_index);
if(device_info->error != cudaSuccess) {
device_info->error_message = "Error setting current device.";
return device_info;
}
device_info->device_string = devProp.name;
size_t freemem, totalmem;
device_info->error = cudaMemGetInfo(&freemem, &totalmem);
if(device_info->error != cudaSuccess) {
device_info->error_message = "Error setting current device.";
return device_info;
}
device_info->free_mem_size = freemem;
device_info->max_allocable_mem_size = freemem / 4;
double mem_in_gb = totalmem / 1073741824.0;
stringstream ss;
ss << setprecision(2) << mem_in_gb;
device_info->device_string += (" (" + ss.str() + "GB)");
return device_info;
}
bool cuda_hasher::configure(xmrig::HasherConfig &config) {
int index = config.getGPUCardsCount();
double intensity = 0;
int total_threads = 0;
intensity = config.getAverageGPUIntensity();
if (intensity == 0) {
m_intensity = 0;
m_description = "Status: DISABLED - by user.";
return false;
}
bool cards_selected = false;
intensity = 0;
for(vector<cuda_device_info *>::iterator d = __devices.begin(); d != __devices.end(); d++, index++) {
stringstream ss;
ss << "["<< (index + 1) << "] " << (*d)->device_string;
string device_description = ss.str();
(*d)->device_index = index;
(*d)->profile_info.profile = m_profile;
if(config.gpuFilter().size() > 0) {
bool found = false;
for(xmrig::GPUFilter fit : config.gpuFilter()) {
if(device_description.find(fit.filter) != string::npos) {
found = true;
break;
}
}
if(!found) {
(*d)->profile_info.threads = 0;
ss << " - DISABLED" << endl;
m_description += ss.str();
continue;
}
else {
cards_selected = true;
}
}
else {
cards_selected = true;
}
ss << endl;
double device_intensity = config.getGPUIntensity((*d)->device_index);
m_description += ss.str();
if(!(__setup_device_info((*d), device_intensity))) {
m_description += (*d)->error_message;
m_description += "\n";
continue;
};
DeviceInfo device;
char bus_id[100];
if(cudaDeviceGetPCIBusId(bus_id, 100, (*d)->cuda_index) == cudaSuccess) {
device.bus_id = bus_id;
int domain_separator = device.bus_id.find(":");
if(domain_separator != string::npos) {
device.bus_id.erase(0, domain_separator + 1);
}
}
device.name = (*d)->device_string;
device.intensity = device_intensity;
storeDeviceInfo((*d)->device_index, device);
__enabledDevices.push_back(*d);
total_threads += (*d)->profile_info.threads;
intensity += device_intensity;
}
config.addGPUCardsCount(index - config.getGPUCardsCount());
if(!cards_selected) {
m_intensity = 0;
m_description += "Status: DISABLED - no card enabled because of filtering.";
return false;
}
if (total_threads == 0) {
m_intensity = 0;
m_description += "Status: DISABLED - not enough resources.";
return false;
}
if(!buildThreadData())
return false;
m_intensity = intensity / __enabledDevices.size();
m_computingThreads = __enabledDevices.size() * 2; // 2 computing threads for each device
m_description += "Status: ENABLED - with " + to_string(total_threads) + " threads.";
return true;
}
void cuda_hasher::cleanup() {
for(vector<cuda_device_info *>::iterator d = __devices.begin(); d != __devices.end(); d++) {
cuda_free(*d);
}
}
bool cuda_hasher::__setup_device_info(cuda_device_info *device, double intensity) {
device->profile_info.threads_per_chunk = (uint32_t)(device->max_allocable_mem_size / device->profile_info.profile->memSize);
size_t chunk_size = device->profile_info.threads_per_chunk * device->profile_info.profile->memSize;
if(chunk_size == 0) {
device->error = cudaErrorInitializationError;
device->error_message = "Not enough memory on GPU.";
return false;
}
uint64_t usable_memory = device->free_mem_size;
double chunks = (double)usable_memory / (double)chunk_size;
uint32_t max_threads = (uint32_t)(device->profile_info.threads_per_chunk * chunks);
if(max_threads == 0) {
device->error = cudaErrorInitializationError;
device->error_message = "Not enough memory on GPU.";
return false;
}
device->profile_info.threads = (uint32_t)(max_threads * intensity / 100.0);
device->profile_info.threads = (device->profile_info.threads / 2) * 2; // make it divisible by 2 to allow for parallel kernel execution
if(max_threads > 0 && device->profile_info.threads == 0 && intensity > 0)
device->profile_info.threads = 2;
chunks = (double)device->profile_info.threads / (double)device->profile_info.threads_per_chunk;
cuda_allocate(device, chunks, chunk_size);
if(device->error != cudaSuccess)
return false;
return true;
}
bool cuda_hasher::buildThreadData() {
__thread_data = new cuda_gpumgmt_thread_data[__enabledDevices.size() * 2];
for(int i=0; i < __enabledDevices.size(); i++) {
cuda_device_info *device = __enabledDevices[i];
for(int threadId = 0; threadId < 2; threadId ++) {
cuda_gpumgmt_thread_data &thread_data = __thread_data[i * 2 + threadId];
thread_data.device = device;
thread_data.thread_id = threadId;
cudaStream_t stream;
device->error = cudaStreamCreate(&stream);
if(device->error != cudaSuccess) {
LOG("Error running kernel: (" + to_string(device->error) + ") cannot create cuda stream.");
return false;
}
thread_data.device_data = stream;
#ifdef PARALLEL_CUDA
if(threadId == 0) {
thread_data.threads_idx = 0;
thread_data.threads = device->profile_info.threads / 2;
}
else {
thread_data.threads_idx = device->profile_info.threads / 2;
thread_data.threads = device->profile_info.threads - thread_data.threads_idx;
}
#else
thread_data.threads_idx = 0;
thread_data.threads = device->profile_info.threads;
#endif
thread_data.argon2 = new Argon2(cuda_kernel_prehasher, cuda_kernel_filler, cuda_kernel_posthasher,
nullptr, &thread_data);
thread_data.argon2->setThreads(thread_data.threads);
thread_data.hashData.outSize = xmrig::ARGON2_HASHLEN + 4;
}
}
return true;
}
int cuda_hasher::compute(int threadIdx, uint8_t *input, size_t size, uint8_t *output) {
cuda_gpumgmt_thread_data &threadData = __thread_data[threadIdx];
cudaSetDevice(threadData.device->cuda_index);
threadData.hashData.input = input;
threadData.hashData.inSize = size;
threadData.hashData.output = output;
int hashCount = threadData.argon2->generateHashes(*m_profile, threadData.hashData);
if(threadData.device->error != cudaSuccess) {
LOG("Error running kernel: (" + to_string(threadData.device->error) + ")" + threadData.device->error_message);
return 0;
}
uint32_t *nonce = ((uint32_t *)(((uint8_t*)threadData.hashData.input) + 39));
(*nonce) += threadData.threads;
return hashCount;
}
size_t cuda_hasher::parallelism(int workerIdx) {
cuda_gpumgmt_thread_data &threadData = __thread_data[workerIdx];
return threadData.threads;
}
size_t cuda_hasher::deviceCount() {
return __enabledDevices.size();
}
REGISTER_HASHER(cuda_hasher);
#endif //WITH_CUDA

View file

@ -0,0 +1,126 @@
//
// Created by Haifa Bogdan Adnan on 18/09/2018.
//
#ifndef ARGON2_CUDA_HASHER_H
#define ARGON2_CUDA_HASHER_H
#if defined(WITH_CUDA)
struct cuda_kernel_arguments {
void *memory_chunk_0;
void *memory_chunk_1;
void *memory_chunk_2;
void *memory_chunk_3;
void *memory_chunk_4;
void *memory_chunk_5;
uint32_t *refs;
uint32_t *idxs;
uint32_t *segments;
uint32_t *preseed_memory[2];
uint32_t *seed_memory[2];
uint32_t *out_memory[2];
uint32_t *hash_memory[2];
uint32_t *host_seed_memory[2];
};
struct argon2profile_info {
argon2profile_info() {
threads = 0;
threads_per_chunk = 0;
}
uint32_t threads;
uint32_t threads_per_chunk;
Argon2Profile *profile;
};
struct cuda_device_info {
cuda_device_info() {
device_index = 0;
device_string = "";
free_mem_size = 0;
max_allocable_mem_size = 0;
error = cudaSuccess;
error_message = "";
}
int device_index;
int cuda_index;
string device_string;
uint64_t free_mem_size;
uint64_t max_allocable_mem_size;
argon2profile_info profile_info;
cuda_kernel_arguments arguments;
mutex device_lock;
cudaError_t error;
string error_message;
};
struct cuda_gpumgmt_thread_data {
void lock() {
#ifndef PARALLEL_CUDA
device->device_lock.lock();
#endif
}
void unlock() {
#ifndef PARALLEL_CUDA
device->device_lock.unlock();
#endif
}
int thread_id;
cuda_device_info *device;
Argon2 *argon2;
HashData hashData;
void *device_data;
int threads;
int threads_idx;
};
class cuda_hasher : public Hasher {
public:
cuda_hasher();
~cuda_hasher();
virtual bool initialize(xmrig::Algo algorithm, xmrig::Variant variant);
virtual bool configure(xmrig::HasherConfig &config);
virtual void cleanup();
virtual int compute(int threadIdx, uint8_t *input, size_t size, uint8_t *output);
virtual size_t parallelism(int workerIdx);
virtual size_t deviceCount();
private:
cuda_device_info *__get_device_info(int device_index);
bool __setup_device_info(cuda_device_info *device, double intensity);
vector<cuda_device_info*> __query_cuda_devices(cudaError_t &error, string &error_message);
bool buildThreadData();
vector<cuda_device_info*> __devices;
vector<cuda_device_info*> __enabledDevices;
cuda_gpumgmt_thread_data *__thread_data;
Argon2Profile *m_profile;
};
// CUDA kernel exports
extern void cuda_allocate(cuda_device_info *device, double chunks, size_t chunk_size);
extern void cuda_free(cuda_device_info *device);
extern bool cuda_kernel_prehasher(void *memory, int threads, Argon2Profile *profile, void *user_data);
extern void *cuda_kernel_filler(int threads, Argon2Profile *profile, void *user_data);
extern bool cuda_kernel_posthasher(void *memory, int threads, Argon2Profile *profile, void *user_data);
// end CUDA kernel exports
#endif //WITH_CUDA
#endif //ARGON2_CUDA_HASHER_H

File diff suppressed because it is too large Load diff