Add Haven v3 support (#134)

This commit is contained in:
Ben Gräf 2018-06-14 21:22:21 +02:00 committed by GitHub
parent ae15b9f5ac
commit 3ecda3e63a
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
7 changed files with 466 additions and 402 deletions

View file

@ -282,7 +282,8 @@ constexpr static const char *pow_variant_names[] = {
"ipbc",
"alloy",
"xtl",
"msr"
"msr",
"xhv"
};
Options *Options::parse(int argc, char **argv)
@ -1028,6 +1029,11 @@ bool Options::parsePowVariant(const char *powVariant)
break;
}
if (i == ARRAY_SIZE(pow_variant_names) - 1 && !strcmp(powVariant, "haven")) {
m_powVariant = POW_XHV;
break;
}
if (i == ARRAY_SIZE(pow_variant_names) - 1) {
showUsage(1);
return false;

View file

@ -31,6 +31,7 @@ enum PowVariant
POW_ALLOY,
POW_XTL,
POW_MSR,
POW_XHV,
LAST_ITEM
};
@ -50,6 +51,8 @@ inline std::string getPowVariantName(PowVariant powVariant)
return "xtl";
case POW_MSR:
return "msr";
case POW_XHV:
return "xhv";
case POW_AUTODETECT:
default:
return "-1";
@ -106,6 +109,8 @@ inline PowVariant parseVariant(const std::string variant)
powVariant = PowVariant::POW_XTL;
} else if (variant == "msr" || variant == "masari") {
powVariant = PowVariant::POW_MSR;
} else if (variant == "xhv" || variant == "haven") {
powVariant = PowVariant::POW_XHV;
}
return powVariant;

View file

@ -92,14 +92,24 @@ static void cryptonight_lite_softaes(PowVariant powVersion, const uint8_t* input
template <size_t NUM_HASH_BLOCKS>
static void cryptonight_heavy_aesni(PowVariant powVersion, const uint8_t* input, size_t size, uint8_t* output, cryptonight_ctx *ctx) {
# if !defined(XMRIG_ARMv7)
if (powVersion == PowVariant::POW_XHV) {
CryptoNightMultiHash<0x40000, POW_DEFAULT_INDEX_SHIFT, MEMORY_HEAVY, 0x3FFFF0, false, NUM_HASH_BLOCKS>::hashHeavyHaven(input, size, output, ctx);
}
else {
CryptoNightMultiHash<0x40000, POW_DEFAULT_INDEX_SHIFT, MEMORY_HEAVY, 0x3FFFF0, false, NUM_HASH_BLOCKS>::hashHeavy(input, size, output, ctx);
}
# endif
}
template <size_t NUM_HASH_BLOCKS>
static void cryptonight_heavy_softaes(PowVariant powVersion, const uint8_t* input, size_t size, uint8_t* output, cryptonight_ctx *ctx) {
if (powVersion == PowVariant::POW_XHV) {
CryptoNightMultiHash<0x40000, POW_DEFAULT_INDEX_SHIFT, MEMORY_HEAVY, 0x3FFFF0, true, NUM_HASH_BLOCKS>::hashHeavyHaven(input, size, output, ctx);
}
else {
CryptoNightMultiHash<0x40000, POW_DEFAULT_INDEX_SHIFT, MEMORY_HEAVY, 0x3FFFF0, true, NUM_HASH_BLOCKS>::hashHeavy(input, size, output, ctx);
}
}
void (*cryptonight_hash_ctx[MAX_NUM_HASH_BLOCKS])(PowVariant powVersion, const uint8_t* input, size_t size, uint8_t* output, cryptonight_ctx *ctx);
@ -195,6 +205,21 @@ bool CryptoNight::selfTest(int algo)
cryptonight_hash_ctx[2](PowVariant::POW_V0, test_input, 76, output, ctx);
resultHeavy = resultHeavy && memcmp(output, test_output_heavy, 96) == 0;
#endif
// cn-heavy haven
cryptonight_hash_ctx[0](PowVariant::POW_XHV, test_input, 76, output, ctx);
resultHeavy = resultHeavy && memcmp(output, test_output_heavy_haven, 32) == 0;
#if MAX_NUM_HASH_BLOCKS > 1
cryptonight_hash_ctx[1](PowVariant::POW_XHV, test_input, 76, output, ctx);
resultHeavy = resultHeavy && memcmp(output, test_output_heavy_haven, 64) == 0;
#endif
#if MAX_NUM_HASH_BLOCKS > 2
cryptonight_hash_ctx[2](PowVariant::POW_XHV, test_input, 76, output, ctx);
resultHeavy = resultHeavy && memcmp(output, test_output_heavy_haven, 96) == 0;
#endif
} else if (algo == Options::ALGO_CRYPTONIGHT_LITE) {
// cn-lite v0

View file

@ -157,4 +157,14 @@ const static uint8_t test_output_heavy[160] = {
0xAD, 0xB1, 0xFD, 0x89, 0xFB, 0x5C, 0xB4, 0x25, 0x6A, 0xDD, 0xB0, 0x09, 0xC5, 0x72, 0x87, 0xEB
};
// CN-Heavy Haven
const static uint8_t test_output_heavy_haven[160] = {
0x5A, 0xC3, 0xF7, 0x85, 0xC4, 0x90, 0xC5, 0x85, 0x50, 0xEC, 0x95, 0xD2, 0x72, 0x65, 0x63, 0x57,
0x7E, 0x7C, 0x1C, 0x21, 0x2D, 0x0C, 0xDE, 0x59, 0x12, 0x73, 0x20, 0x1E, 0x44, 0xFD, 0xD5, 0xB6,
0x1F, 0x4E, 0xB2, 0x0A, 0x36, 0x51, 0x4B, 0xF5, 0x4D, 0xC9, 0xE0, 0x90, 0x2C, 0x16, 0x47, 0x3F,
0xDE, 0x18, 0x29, 0x8E, 0xBB, 0x34, 0x2B, 0xEF, 0x7A, 0x04, 0x22, 0xD1, 0xB1, 0xF2, 0x48, 0xDA,
0xE3, 0x7F, 0x4B, 0x4C, 0xB4, 0xDF, 0xE8, 0xD3, 0x70, 0xE2, 0xE7, 0x44, 0x25, 0x87, 0x12, 0xF9,
0x8F, 0x28, 0x0B, 0xCE, 0x2C, 0xEE, 0xDD, 0x88, 0x94, 0x35, 0x48, 0x51, 0xAE, 0xC8, 0x9C, 0x0B
};
#endif /* __CRYPTONIGHT_TEST_H__ */

View file

@ -785,6 +785,83 @@ public:
output + hashBlock * 32);
}
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, ctx->state[hashBlock], 200);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = ctx->memory + hashBlock * MEM;
h[hashBlock] = reinterpret_cast<uint64_t*>(ctx->state[hashBlock]);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*) &l[hashBlock][idx[hashBlock] & MASK], _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
} else {
cx = _mm_load_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
}
_mm_store_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx));
idx[hashBlock] = EXTRACT64(cx);
bx[hashBlock] = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
int64_t n = ((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
int32_t d = ((int32_t*)&l[hashBlock][idx[hashBlock] & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0] = n ^ q;
idx[hashBlock] = (~d) ^ q;
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[ctx->state[hashBlock][0] & 3](ctx->state[hashBlock], 200,
output + hashBlock * 32);
}
}
};
@ -1052,6 +1129,72 @@ public:
keccakf(h, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, ctx->state[0], 200);
l = ctx->memory;
h = reinterpret_cast<uint64_t*>(ctx->state[0]);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= ch;
al ^= cl;
idx = al;
int64_t n = ((int64_t*)&l[idx & MASK])[0];
int32_t d = ((int32_t*)&l[idx & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[idx & MASK])[0] = n ^ q;
idx = (~d) ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
@ -1474,6 +1617,112 @@ public:
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = (~d) ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = (~d) ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
@ -2058,6 +2307,153 @@ public:
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
const uint8_t* l2 = ctx->memory + 2 * MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = (~d) ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = (~d) ^ q;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
n = ((int64_t*)&l2[idx2 & MASK])[0];
d = ((int32_t*)&l2[idx2 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l2[idx2 & MASK])[0] = n ^ q;
idx2 = (~d) ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
@ -2616,186 +3012,15 @@ public:
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
const uint8_t* l2 = ctx->memory + 2 * MEM;
const uint8_t* l3 = ctx->memory + 3 * MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
// not supported
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
n = ((int64_t*)&l2[idx2 & MASK])[0];
d = ((int32_t*)&l2[idx2 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l2[idx2 & MASK])[0] = n ^ q;
idx2 = d ^ q;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
n = ((int64_t*)&l3[idx3 & MASK])[0];
d = ((int32_t*)&l3[idx3 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l3[idx3 & MASK])[0] = n ^ q;
idx3 = d ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, output + 96);
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
// not supported
}
};
@ -3469,226 +3694,15 @@ public:
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
keccak((const uint8_t*) input + 4 * size, (int) size, ctx->state[4], 200);
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
const uint8_t* l2 = ctx->memory + 2 * MEM;
const uint8_t* l3 = ctx->memory + 3 * MEM;
const uint8_t* l4 = ctx->memory + 4 * MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
uint64_t* h4 = reinterpret_cast<uint64_t*>(ctx->state[4]);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t al4 = h4[0] ^h4[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
uint64_t ah4 = h4[1] ^h4[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
uint64_t idx4 = h4[0] ^h4[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
__m128i cx4;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
cx4 = _mm_aesenc_si128(cx4, _mm_set_epi64x(ah4, al4));
// not supported
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
idx4 = EXTRACT64(cx4);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
bx4 = cx4;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
n = ((int64_t*)&l2[idx2 & MASK])[0];
d = ((int32_t*)&l2[idx2 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l2[idx2 & MASK])[0] = n ^ q;
idx2 = d ^ q;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
n = ((int64_t*)&l3[idx3 & MASK])[0];
d = ((int32_t*)&l3[idx3 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l3[idx3 & MASK])[0] = n ^ q;
idx3 = d ^ q;
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
lo = __umul128(idx4, cl, &hi);
al4 += hi;
ah4 += lo;
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
ah4 ^= ch;
al4 ^= cl;
idx4 = al4;
n = ((int64_t*)&l4[idx4 & MASK])[0];
d = ((int32_t*)&l4[idx4 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l4[idx4 & MASK])[0] = n ^ q;
idx4 = d ^ q;
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
// not supported
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
keccakf(h4, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, output + 96);
extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, output + 128);
}
};
#endif /* __CRYPTONIGHT_X86_H__ */

View file

@ -150,6 +150,10 @@ PowVariant Job::powVariant() const
{
return POW_V1;
}
else if (m_powVariant == PowVariant::POW_XHV && m_blob[0] < 3)
{
return POW_V0;
}
else
{
return m_powVariant;

View file

@ -36,7 +36,7 @@
#define APP_DESC "XMRigCC CPU miner"
#define APP_COPYRIGHT "Copyright (C) 2017- BenDr0id"
#endif
#define APP_VERSION "1.6.4_masari_v7_support (based on XMRig)"
#define APP_VERSION "1.6.4_haven_v3_support (based on XMRig)"
#define APP_DOMAIN ""
#define APP_SITE "https://github.com/Bendr0id/xmrigCC"
#define APP_KIND "cpu"