More precise hashrate calculation

- Use only steady timestamp counters to guarantee correctness
- CPU backend: directly measure total hashrate using raw hash counters from each thread; update data more often on ARM CPUs because they're slower
- GPU backends: directly measure total hashrate too, but use interpolator with 4 second lag to fix variance from batches of hashes

Total hashrate is now measured directly (realtime for CPU, 4 seconds lag for GPU), so it might differ a bit from the sum of all thread hashrates because data points are taken at different moments in time.

Overhead is reduced a lot since it doesn't have to go through all threads to calculate max total hashrate on every timer tick (2 times a second).
This commit is contained in:
SChernykh 2020-10-10 11:18:01 +02:00
parent 0a2fe5caa7
commit 3fbf2ac3d4
17 changed files with 192 additions and 39 deletions

View file

@ -48,13 +48,13 @@ inline static const char *format(double h, char *buf, size_t size)
xmrig::Hashrate::Hashrate(size_t threads) :
m_threads(threads)
m_threads(threads + 1)
{
m_counts = new uint64_t*[threads];
m_timestamps = new uint64_t*[threads];
m_top = new uint32_t[threads];
m_counts = new uint64_t*[m_threads];
m_timestamps = new uint64_t*[m_threads];
m_top = new uint32_t[m_threads];
for (size_t i = 0; i < threads; i++) {
for (size_t i = 0; i < m_threads; i++) {
m_counts[i] = new uint64_t[kBucketSize]();
m_timestamps[i] = new uint64_t[kBucketSize]();
m_top[i] = 0;
@ -77,17 +77,8 @@ xmrig::Hashrate::~Hashrate()
double xmrig::Hashrate::calc(size_t ms) const
{
double result = 0.0;
double data;
for (size_t i = 0; i < m_threads; ++i) {
data = calc(i, ms);
if (std::isnormal(data)) {
result += data;
}
}
return result;
const double data = calc(0, ms);
return std::isnormal(data) ? data : 0.0;
}
@ -102,7 +93,7 @@ double xmrig::Hashrate::calc(size_t threadId, size_t ms) const
uint64_t earliestStamp = 0;
bool haveFullSet = false;
const uint64_t timeStampLimit = xmrig::Chrono::highResolutionMSecs() - ms;
const uint64_t timeStampLimit = xmrig::Chrono::steadyMSecs() - ms;
uint64_t* timestamps = m_timestamps[threadId];
uint64_t* counts = m_counts[threadId];
@ -183,9 +174,9 @@ rapidjson::Value xmrig::Hashrate::toJSON(size_t threadId, rapidjson::Document &d
auto &allocator = doc.GetAllocator();
Value out(kArrayType);
out.PushBack(normalize(calc(threadId, ShortInterval)), allocator);
out.PushBack(normalize(calc(threadId, MediumInterval)), allocator);
out.PushBack(normalize(calc(threadId, LargeInterval)), allocator);
out.PushBack(normalize(calc(threadId + 1, ShortInterval)), allocator);
out.PushBack(normalize(calc(threadId + 1, MediumInterval)), allocator);
out.PushBack(normalize(calc(threadId + 1, LargeInterval)), allocator);
return out;
}