Integrate new algo "cryptonight-lite-ipbc" (#100)

This commit is contained in:
Ben Gräf 2018-04-18 21:50:00 +02:00 committed by GitHub
parent 9ea520a3a4
commit a5c311fad8
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
16 changed files with 1938 additions and 102 deletions

View file

@ -626,6 +626,91 @@ public:
}
}
inline static void hashLiteIpbc(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
uint64_t tweak1_2[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, ctx->state[hashBlock], 200);
tweak1_2[hashBlock] = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + hashBlock * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[hashBlock]) + 24));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = ctx->memory + hashBlock * MEM;
h[hashBlock] = reinterpret_cast<uint64_t*>(ctx->state[hashBlock]);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] =
_mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*) &l[hashBlock][idx[hashBlock] & MASK], _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
} else {
cx = _mm_load_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
}
_mm_store_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx));
const uint8_t tmp = reinterpret_cast<const uint8_t*>(&l[hashBlock][idx[hashBlock] & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l[hashBlock][idx[hashBlock] & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx[hashBlock] = EXTRACT64(cx);
bx[hashBlock] = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*)&l[hashBlock][idx[hashBlock] & MASK])[1] ^= ((uint64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[ctx->state[hashBlock][0] & 3](ctx->state[hashBlock], 200,
output + hashBlock * 32);
}
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
@ -835,6 +920,75 @@ public:
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
}
inline static void hashLiteIpbc(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, ctx->state[0], 200);
uint64_t tweak1_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[0]) + 24));
l = ctx->memory;
h = reinterpret_cast<uint64_t*>(ctx->state[0]);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
const uint8_t tmp = reinterpret_cast<const uint8_t*>(&l[idx & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l[idx & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
ah ^= tweak1_2;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= tweak1_2;
((uint64_t*)&l[idx & MASK])[1] ^= ((uint64_t*)&l[idx & MASK])[0];
ah ^= ch;
al ^= cl;
idx = al;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
@ -1105,6 +1259,118 @@ public:
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
}
inline static void hashLiteIpbc(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[0]) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[1]) + 24));
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
@ -1492,6 +1758,162 @@ public:
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
}
inline static void hashLiteIpbc(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[0]) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[1]) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[2]) + 24));
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
const uint8_t* l2 = ctx->memory + 2 * MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
@ -1993,6 +2415,204 @@ public:
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, output + 96);
}
inline static void hashLiteIpbc(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[0]) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[1]) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[2]) + 24));
uint64_t tweak1_2_3 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 3 * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[3]) + 24));
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
const uint8_t* l2 = ctx->memory + 2 * MEM;
const uint8_t* l3 = ctx->memory + 3 * MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l3[idx3 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
ah3 ^= tweak1_2_3;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= tweak1_2_3;
((uint64_t*)&l3[idx3 & MASK])[1] ^= ((uint64_t*)&l3[idx3 & MASK])[0];
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, output + 96);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
@ -2606,6 +3226,246 @@ public:
extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, output + 128);
}
inline static void hashLiteIpbc(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
cryptonight_ctx* __restrict__ ctx)
{
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
keccak((const uint8_t*) input + 4 * size, (int) size, ctx->state[4], 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[0]) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[1]) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[2]) + 24));
uint64_t tweak1_2_3 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 3 * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[3]) + 24));
uint64_t tweak1_2_4 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 4 * size) ^
*(reinterpret_cast<const uint64_t*>(ctx->state[4]) + 24));
const uint8_t* l0 = ctx->memory;
const uint8_t* l1 = ctx->memory + MEM;
const uint8_t* l2 = ctx->memory + 2 * MEM;
const uint8_t* l3 = ctx->memory + 3 * MEM;
const uint8_t* l4 = ctx->memory + 4 * MEM;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
uint64_t* h4 = reinterpret_cast<uint64_t*>(ctx->state[4]);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t al4 = h4[0] ^h4[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
uint64_t ah4 = h4[1] ^h4[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
uint64_t idx4 = h4[0] ^h4[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
__m128i cx4;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
cx4 = _mm_aesenc_si128(cx4, _mm_set_epi64x(ah4, al4));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l3[idx3 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l4[idx4 & MASK])[11];
index = (((tmp >> 3) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l4[idx4 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
idx4 = EXTRACT64(cx4);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
bx4 = cx4;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
ah3 ^= tweak1_2_3;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= tweak1_2_3;
((uint64_t*)&l3[idx3 & MASK])[1] ^= ((uint64_t*)&l3[idx3 & MASK])[0];
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
lo = __umul128(idx4, cl, &hi);
al4 += hi;
ah4 += lo;
ah4 ^= tweak1_2_4;
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
ah4 ^= tweak1_2_4;
((uint64_t*)&l4[idx4 & MASK])[1] ^= ((uint64_t*)&l4[idx4 & MASK])[0];
ah4 ^= ch;
al4 ^= cl;
idx4 = al4;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
keccakf(h4, 24);
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, output);
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, output + 32);
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, output + 64);
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, output + 96);
extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, output + 128);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,