Preparation for #1.4.0 (#30)
- Fixed CPU affinity on Windows for NUMA and CPUs with lot of cores - Implemented per thread configurable Multihash mode (double, triple, quadruple, quintuple) - Rebased from XMRig 2.4.4
This commit is contained in:
parent
990bf8d963
commit
cf868666d4
41 changed files with 2575 additions and 1104 deletions
|
@ -6,6 +6,8 @@
|
|||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2016 Imran Yusuff <https://github.com/imranyusuff>
|
||||
* Copyright 2016-2017 XMRig <support@xmrig.com>
|
||||
* Copyright 2018 Sebastian Stolzenberg <https://github.com/sebastianstolzenberg>
|
||||
* Copyright 2018 BenDroid <ben@graef.in>
|
||||
*
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
|
@ -47,27 +49,32 @@ extern "C"
|
|||
}
|
||||
|
||||
|
||||
static inline void do_blake_hash(const void* input, size_t len, char* output) {
|
||||
static inline void do_blake_hash(const void* input, size_t len, char* output)
|
||||
{
|
||||
blake256_hash(reinterpret_cast<uint8_t*>(output), static_cast<const uint8_t*>(input), len);
|
||||
}
|
||||
|
||||
|
||||
static inline void do_groestl_hash(const void* input, size_t len, char* output) {
|
||||
static inline void do_groestl_hash(const void* input, size_t len, char* output)
|
||||
{
|
||||
groestl(static_cast<const uint8_t*>(input), len * 8, reinterpret_cast<uint8_t*>(output));
|
||||
}
|
||||
|
||||
|
||||
static inline void do_jh_hash(const void* input, size_t len, char* output) {
|
||||
static inline void do_jh_hash(const void* input, size_t len, char* output)
|
||||
{
|
||||
jh_hash(32 * 8, static_cast<const uint8_t*>(input), 8 * len, reinterpret_cast<uint8_t*>(output));
|
||||
}
|
||||
|
||||
|
||||
static inline void do_skein_hash(const void* input, size_t len, char* output) {
|
||||
static inline void do_skein_hash(const void* input, size_t len, char* output)
|
||||
{
|
||||
xmr_skein(static_cast<const uint8_t*>(input), reinterpret_cast<uint8_t*>(output));
|
||||
}
|
||||
|
||||
|
||||
void (* const extra_hashes[4])(const void *, size_t, char *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
|
||||
void
|
||||
(* const extra_hashes[4])(const void*, size_t, char*) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
|
||||
|
||||
|
||||
static inline __attribute__((always_inline)) __m128i _mm_set_epi64x(const uint64_t a, const uint64_t b)
|
||||
|
@ -94,7 +101,9 @@ static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi)
|
|||
return (uint64_t) r;
|
||||
}
|
||||
#else
|
||||
static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
|
||||
|
||||
static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi)
|
||||
{
|
||||
// multiplier = ab = a * 2^32 + b
|
||||
// multiplicand = cd = c * 2^32 + d
|
||||
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
||||
|
@ -118,6 +127,7 @@ static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uin
|
|||
|
||||
return product_lo;
|
||||
}
|
||||
|
||||
#endif
|
||||
|
||||
|
||||
|
@ -154,18 +164,20 @@ template<uint8_t rcon>
|
|||
static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2)
|
||||
{
|
||||
__m128i xout1 = soft_aeskeygenassist<rcon>(*xout2);
|
||||
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
|
||||
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
|
||||
*xout0 = sl_xor(*xout0);
|
||||
*xout0 = _mm_xor_si128(*xout0, xout1);
|
||||
xout1 = soft_aeskeygenassist<0x00>(*xout0);
|
||||
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
|
||||
xout1 = soft_aeskeygenassist<0x00>(*xout0);
|
||||
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
|
||||
*xout2 = sl_xor(*xout2);
|
||||
*xout2 = _mm_xor_si128(*xout2, xout1);
|
||||
}
|
||||
|
||||
|
||||
template<bool SOFT_AES>
|
||||
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
|
||||
static inline void
|
||||
aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5,
|
||||
__m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
|
||||
{
|
||||
__m128i xout0 = _mm_load_si128(memory);
|
||||
__m128i xout2 = _mm_load_si128(memory + 1);
|
||||
|
@ -191,7 +203,9 @@ static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, _
|
|||
|
||||
|
||||
template<bool SOFT_AES>
|
||||
static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
|
||||
static inline void
|
||||
aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6,
|
||||
__m128i* x7)
|
||||
{
|
||||
if (SOFT_AES) {
|
||||
*x0 = soft_aesenc(*x0, key);
|
||||
|
@ -205,21 +219,21 @@ static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2,
|
|||
}
|
||||
# ifndef XMRIG_ARMv7
|
||||
else {
|
||||
*x0 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x0), key));
|
||||
*x1 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x1), key));
|
||||
*x2 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x2), key));
|
||||
*x3 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x3), key));
|
||||
*x4 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x4), key));
|
||||
*x5 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x5), key));
|
||||
*x6 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x6), key));
|
||||
*x7 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t *) x7), key));
|
||||
*x0 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x0), key));
|
||||
*x1 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x1), key));
|
||||
*x2 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x2), key));
|
||||
*x3 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x3), key));
|
||||
*x4 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x4), key));
|
||||
*x5 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x5), key));
|
||||
*x6 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x6), key));
|
||||
*x7 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x7), key));
|
||||
}
|
||||
# endif
|
||||
}
|
||||
|
||||
|
||||
template<size_t MEM, bool SOFT_AES>
|
||||
static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
|
||||
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
|
||||
{
|
||||
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
|
||||
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
||||
|
@ -259,8 +273,7 @@ static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
|
|||
xin5 ^= k9;
|
||||
xin6 ^= k9;
|
||||
xin7 ^= k9;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
||||
}
|
||||
|
||||
|
@ -277,7 +290,7 @@ static inline void cn_explode_scratchpad(const __m128i *input, __m128i *output)
|
|||
|
||||
|
||||
template<size_t MEM, bool SOFT_AES>
|
||||
static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
||||
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
|
||||
{
|
||||
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
|
||||
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
||||
|
@ -293,8 +306,7 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
|||
xout6 = _mm_load_si128(output + 10);
|
||||
xout7 = _mm_load_si128(output + 11);
|
||||
|
||||
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8)
|
||||
{
|
||||
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
|
||||
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
|
||||
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
|
||||
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
|
||||
|
@ -327,8 +339,7 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
|||
xout5 ^= k9;
|
||||
xout6 ^= k9;
|
||||
xout7 ^= k9;
|
||||
}
|
||||
else {
|
||||
} else {
|
||||
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
||||
}
|
||||
}
|
||||
|
@ -343,149 +354,723 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
|||
_mm_store_si128(output + 11, xout7);
|
||||
}
|
||||
|
||||
// n-Loop version. Seems to be little bit slower then the hardcoded one.
|
||||
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES, size_t NUM_HASH_BLOCKS>
|
||||
class CryptoNightMultiHash
|
||||
{
|
||||
public:
|
||||
inline static void hash(const void* __restrict__ input,
|
||||
size_t size,
|
||||
void* __restrict__ output,
|
||||
cryptonight_ctx* __restrict__ ctx)
|
||||
{
|
||||
const uint8_t* l[NUM_HASH_BLOCKS];
|
||||
uint64_t* h[NUM_HASH_BLOCKS];
|
||||
uint64_t al[NUM_HASH_BLOCKS];
|
||||
uint64_t ah[NUM_HASH_BLOCKS];
|
||||
__m128i bx[NUM_HASH_BLOCKS];
|
||||
uint64_t idx[NUM_HASH_BLOCKS];
|
||||
|
||||
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
||||
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size,
|
||||
ctx->state[hashBlock], 200);
|
||||
}
|
||||
|
||||
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
||||
l[hashBlock] = ctx->memory + hashBlock * MEM;
|
||||
h[hashBlock] = reinterpret_cast<uint64_t*>(ctx->state[hashBlock]);
|
||||
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
|
||||
|
||||
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
|
||||
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
|
||||
bx[hashBlock] =
|
||||
_mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
|
||||
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
|
||||
}
|
||||
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
||||
__m128i cx;
|
||||
cx = _mm_load_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK]);
|
||||
|
||||
if (SOFT_AES) {
|
||||
cx = soft_aesenc(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
|
||||
} else {
|
||||
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK],
|
||||
_mm_xor_si128(bx[hashBlock], cx));
|
||||
idx[hashBlock] = EXTRACT64(cx);
|
||||
bx[hashBlock] = cx;
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
|
||||
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
|
||||
lo = __umul128(idx[hashBlock], cl, &hi);
|
||||
|
||||
al[hashBlock] += hi;
|
||||
ah[hashBlock] += lo;
|
||||
|
||||
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
|
||||
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
|
||||
|
||||
ah[hashBlock] ^= ch;
|
||||
al[hashBlock] ^= cl;
|
||||
idx[hashBlock] = al[hashBlock];
|
||||
}
|
||||
}
|
||||
|
||||
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
|
||||
keccakf(h[hashBlock], 24);
|
||||
extra_hashes[ctx->state[hashBlock][0] & 3](ctx->state[hashBlock], 200,
|
||||
static_cast<char*>(output) + hashBlock * 32);
|
||||
}
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
||||
inline void cryptonight_hash(const void *__restrict__ input, size_t size, void *__restrict__ output, cryptonight_ctx *__restrict__ ctx)
|
||||
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 1>
|
||||
{
|
||||
keccak(static_cast<const uint8_t*>(input), (int) size, ctx->state0, 200);
|
||||
public:
|
||||
inline static void hash(const void* __restrict__ input,
|
||||
size_t size,
|
||||
void* __restrict__ output,
|
||||
cryptonight_ctx* __restrict__ ctx)
|
||||
{
|
||||
const uint8_t* l;
|
||||
uint64_t* h;
|
||||
uint64_t al;
|
||||
uint64_t ah;
|
||||
__m128i bx;
|
||||
uint64_t idx;
|
||||
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) ctx->state0, (__m128i*) ctx->memory);
|
||||
keccak(static_cast<const uint8_t*>(input), (int) size, ctx->state[0], 200);
|
||||
|
||||
const uint8_t* l0 = ctx->memory;
|
||||
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state0);
|
||||
l = ctx->memory;
|
||||
h = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
||||
|
||||
uint64_t al0 = h0[0] ^ h0[4];
|
||||
uint64_t ah0 = h0[1] ^ h0[5];
|
||||
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
|
||||
|
||||
uint64_t idx0 = h0[0] ^ h0[4];
|
||||
al = h[0] ^ h[4];
|
||||
ah = h[1] ^ h[5];
|
||||
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
|
||||
idx = h[0] ^ h[4];
|
||||
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
|
||||
|
||||
if (SOFT_AES) {
|
||||
cx = soft_aesenc(cx, _mm_set_epi64x(ah0, al0));
|
||||
}
|
||||
else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||
if (SOFT_AES) {
|
||||
cx = soft_aesenc(cx, _mm_set_epi64x(ah, al));
|
||||
} else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah, al);
|
||||
# endif
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
|
||||
idx = EXTRACT64(cx);
|
||||
bx = cx;
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l[idx & MASK])[0];
|
||||
ch = ((uint64_t*) &l[idx & MASK])[1];
|
||||
lo = __umul128(idx, cl, &hi);
|
||||
|
||||
al += hi;
|
||||
ah += lo;
|
||||
|
||||
((uint64_t*) &l[idx & MASK])[0] = al;
|
||||
((uint64_t*) &l[idx & MASK])[1] = ah;
|
||||
|
||||
ah ^= ch;
|
||||
al ^= cl;
|
||||
idx = al;
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx));
|
||||
idx0 = EXTRACT64(cx);
|
||||
bx0 = cx;
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
||||
lo = __umul128(idx0, cl, &hi);
|
||||
|
||||
al0 += hi;
|
||||
ah0 += lo;
|
||||
|
||||
((uint64_t*)&l0[idx0 & MASK])[0] = al0;
|
||||
((uint64_t*)&l0[idx0 & MASK])[1] = ah0;
|
||||
|
||||
ah0 ^= ch;
|
||||
al0 ^= cl;
|
||||
idx0 = al0;
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
|
||||
keccakf(h, 24);
|
||||
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
||||
}
|
||||
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) ctx->memory, (__m128i*) ctx->state0);
|
||||
|
||||
keccakf(h0, 24);
|
||||
extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, static_cast<char*>(output));
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
||||
inline void cryptonight_double_hash(const void *__restrict__ input, size_t size, void *__restrict__ output, struct cryptonight_ctx *__restrict__ ctx)
|
||||
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 2>
|
||||
{
|
||||
keccak((const uint8_t *) input, (int) size, ctx->state0, 200);
|
||||
keccak((const uint8_t *) input + size, (int) size, ctx->state1, 200);
|
||||
public:
|
||||
inline static void hash(const void* __restrict__ input,
|
||||
size_t size,
|
||||
void* __restrict__ output,
|
||||
cryptonight_ctx* __restrict__ ctx)
|
||||
{
|
||||
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
||||
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
||||
|
||||
const uint8_t* l0 = ctx->memory;
|
||||
const uint8_t* l1 = ctx->memory + MEM;
|
||||
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state0);
|
||||
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state1);
|
||||
const uint8_t* l0 = ctx->memory;
|
||||
const uint8_t* l1 = ctx->memory + MEM;
|
||||
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
||||
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
||||
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
||||
|
||||
uint64_t al0 = h0[0] ^ h0[4];
|
||||
uint64_t al1 = h1[0] ^ h1[4];
|
||||
uint64_t ah0 = h0[1] ^ h0[5];
|
||||
uint64_t ah1 = h1[1] ^ h1[5];
|
||||
uint64_t al0 = h0[0] ^h0[4];
|
||||
uint64_t al1 = h1[0] ^h1[4];
|
||||
uint64_t ah0 = h0[1] ^h0[5];
|
||||
uint64_t ah1 = h1[1] ^h1[5];
|
||||
|
||||
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
||||
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
||||
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
||||
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
||||
|
||||
uint64_t idx0 = h0[0] ^ h0[4];
|
||||
uint64_t idx1 = h1[0] ^ h1[4];
|
||||
uint64_t idx0 = h0[0] ^h0[4];
|
||||
uint64_t idx1 = h1[0] ^h1[4];
|
||||
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
||||
__m128i cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
||||
__m128i cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
||||
|
||||
if (SOFT_AES) {
|
||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
||||
}
|
||||
else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
||||
if (SOFT_AES) {
|
||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
||||
} else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
||||
# endif
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
||||
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
||||
|
||||
idx0 = EXTRACT64(cx0);
|
||||
idx1 = EXTRACT64(cx1);
|
||||
|
||||
bx0 = cx0;
|
||||
bx1 = cx1;
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
||||
lo = __umul128(idx0, cl, &hi);
|
||||
|
||||
al0 += hi;
|
||||
ah0 += lo;
|
||||
|
||||
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
||||
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
||||
|
||||
ah0 ^= ch;
|
||||
al0 ^= cl;
|
||||
idx0 = al0;
|
||||
|
||||
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
||||
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
||||
lo = __umul128(idx1, cl, &hi);
|
||||
|
||||
al1 += hi;
|
||||
ah1 += lo;
|
||||
|
||||
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
||||
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
||||
|
||||
ah1 ^= ch;
|
||||
al1 ^= cl;
|
||||
idx1 = al1;
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
||||
_mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
||||
|
||||
idx0 = EXTRACT64(cx0);
|
||||
idx1 = EXTRACT64(cx1);
|
||||
keccakf(h0, 24);
|
||||
keccakf(h1, 24);
|
||||
|
||||
bx0 = cx0;
|
||||
bx1 = cx1;
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
||||
lo = __umul128(idx0, cl, &hi);
|
||||
|
||||
al0 += hi;
|
||||
ah0 += lo;
|
||||
|
||||
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
||||
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
||||
|
||||
ah0 ^= ch;
|
||||
al0 ^= cl;
|
||||
idx0 = al0;
|
||||
|
||||
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
||||
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
||||
lo = __umul128(idx1, cl, &hi);
|
||||
|
||||
al1 += hi;
|
||||
ah1 += lo;
|
||||
|
||||
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
||||
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
||||
|
||||
ah1 ^= ch;
|
||||
al1 ^= cl;
|
||||
idx1 = al1;
|
||||
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
||||
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
||||
}
|
||||
};
|
||||
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
||||
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
||||
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 3>
|
||||
{
|
||||
public:
|
||||
inline static void hash(const void* __restrict__ input,
|
||||
size_t size,
|
||||
void* __restrict__ output,
|
||||
cryptonight_ctx* __restrict__ ctx)
|
||||
{
|
||||
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
||||
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
||||
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
|
||||
|
||||
keccakf(h0, 24);
|
||||
keccakf(h1, 24);
|
||||
const uint8_t* l0 = ctx->memory;
|
||||
const uint8_t* l1 = ctx->memory + MEM;
|
||||
const uint8_t* l2 = ctx->memory + 2 * MEM;
|
||||
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
||||
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
||||
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
|
||||
|
||||
extra_hashes[ctx->state0[0] & 3](ctx->state0, 200, static_cast<char*>(output));
|
||||
extra_hashes[ctx->state1[0] & 3](ctx->state1, 200, static_cast<char*>(output) + 32);
|
||||
}
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
|
||||
|
||||
uint64_t al0 = h0[0] ^h0[4];
|
||||
uint64_t al1 = h1[0] ^h1[4];
|
||||
uint64_t al2 = h2[0] ^h2[4];
|
||||
uint64_t ah0 = h0[1] ^h0[5];
|
||||
uint64_t ah1 = h1[1] ^h1[5];
|
||||
uint64_t ah2 = h2[1] ^h2[5];
|
||||
|
||||
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
||||
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
||||
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
|
||||
|
||||
uint64_t idx0 = h0[0] ^h0[4];
|
||||
uint64_t idx1 = h1[0] ^h1[4];
|
||||
uint64_t idx2 = h2[0] ^h2[4];
|
||||
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
||||
__m128i cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
||||
__m128i cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
|
||||
|
||||
if (SOFT_AES) {
|
||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
||||
cx2 = soft_aesenc(cx2, _mm_set_epi64x(ah2, al2));
|
||||
} else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
||||
cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2);
|
||||
# endif
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
||||
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
||||
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
|
||||
|
||||
idx0 = EXTRACT64(cx0);
|
||||
idx1 = EXTRACT64(cx1);
|
||||
idx2 = EXTRACT64(cx2);
|
||||
|
||||
bx0 = cx0;
|
||||
bx1 = cx1;
|
||||
bx2 = cx2;
|
||||
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
||||
lo = __umul128(idx0, cl, &hi);
|
||||
|
||||
al0 += hi;
|
||||
ah0 += lo;
|
||||
|
||||
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
||||
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
||||
|
||||
ah0 ^= ch;
|
||||
al0 ^= cl;
|
||||
idx0 = al0;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
||||
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
||||
lo = __umul128(idx1, cl, &hi);
|
||||
|
||||
al1 += hi;
|
||||
ah1 += lo;
|
||||
|
||||
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
||||
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
||||
|
||||
ah1 ^= ch;
|
||||
al1 ^= cl;
|
||||
idx1 = al1;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
|
||||
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
|
||||
lo = __umul128(idx2, cl, &hi);
|
||||
|
||||
al2 += hi;
|
||||
ah2 += lo;
|
||||
|
||||
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
|
||||
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
|
||||
|
||||
ah2 ^= ch;
|
||||
al2 ^= cl;
|
||||
idx2 = al2;
|
||||
}
|
||||
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
|
||||
|
||||
keccakf(h0, 24);
|
||||
keccakf(h1, 24);
|
||||
keccakf(h2, 24);
|
||||
|
||||
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
||||
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
||||
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast<char*>(output) + 64);
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
||||
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 4>
|
||||
{
|
||||
public:
|
||||
inline static void hash(const void* __restrict__ input,
|
||||
size_t size,
|
||||
void* __restrict__ output,
|
||||
cryptonight_ctx* __restrict__ ctx)
|
||||
{
|
||||
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
||||
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
||||
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
|
||||
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
|
||||
|
||||
const uint8_t* l0 = ctx->memory;
|
||||
const uint8_t* l1 = ctx->memory + MEM;
|
||||
const uint8_t* l2 = ctx->memory + 2 * MEM;
|
||||
const uint8_t* l3 = ctx->memory + 3 * MEM;
|
||||
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
||||
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
||||
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
|
||||
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
|
||||
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
|
||||
|
||||
uint64_t al0 = h0[0] ^h0[4];
|
||||
uint64_t al1 = h1[0] ^h1[4];
|
||||
uint64_t al2 = h2[0] ^h2[4];
|
||||
uint64_t al3 = h3[0] ^h3[4];
|
||||
uint64_t ah0 = h0[1] ^h0[5];
|
||||
uint64_t ah1 = h1[1] ^h1[5];
|
||||
uint64_t ah2 = h2[1] ^h2[5];
|
||||
uint64_t ah3 = h3[1] ^h3[5];
|
||||
|
||||
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
||||
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
||||
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
|
||||
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
|
||||
|
||||
uint64_t idx0 = h0[0] ^h0[4];
|
||||
uint64_t idx1 = h1[0] ^h1[4];
|
||||
uint64_t idx2 = h2[0] ^h2[4];
|
||||
uint64_t idx3 = h3[0] ^h3[4];
|
||||
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
||||
__m128i cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
||||
__m128i cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
|
||||
__m128i cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
|
||||
|
||||
if (SOFT_AES) {
|
||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
||||
cx2 = soft_aesenc(cx2, _mm_set_epi64x(ah2, al2));
|
||||
cx3 = soft_aesenc(cx3, _mm_set_epi64x(ah3, al3));
|
||||
} else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
||||
cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2);
|
||||
cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3);
|
||||
# endif
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
||||
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
||||
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
|
||||
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
|
||||
|
||||
idx0 = EXTRACT64(cx0);
|
||||
idx1 = EXTRACT64(cx1);
|
||||
idx2 = EXTRACT64(cx2);
|
||||
idx3 = EXTRACT64(cx3);
|
||||
|
||||
bx0 = cx0;
|
||||
bx1 = cx1;
|
||||
bx2 = cx2;
|
||||
bx3 = cx3;
|
||||
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
||||
lo = __umul128(idx0, cl, &hi);
|
||||
|
||||
al0 += hi;
|
||||
ah0 += lo;
|
||||
|
||||
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
||||
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
||||
|
||||
ah0 ^= ch;
|
||||
al0 ^= cl;
|
||||
idx0 = al0;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
||||
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
||||
lo = __umul128(idx1, cl, &hi);
|
||||
|
||||
al1 += hi;
|
||||
ah1 += lo;
|
||||
|
||||
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
||||
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
||||
|
||||
ah1 ^= ch;
|
||||
al1 ^= cl;
|
||||
idx1 = al1;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
|
||||
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
|
||||
lo = __umul128(idx2, cl, &hi);
|
||||
|
||||
al2 += hi;
|
||||
ah2 += lo;
|
||||
|
||||
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
|
||||
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
|
||||
|
||||
ah2 ^= ch;
|
||||
al2 ^= cl;
|
||||
idx2 = al2;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
|
||||
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
|
||||
lo = __umul128(idx3, cl, &hi);
|
||||
|
||||
al3 += hi;
|
||||
ah3 += lo;
|
||||
|
||||
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
|
||||
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
|
||||
|
||||
ah3 ^= ch;
|
||||
al3 ^= cl;
|
||||
idx3 = al3;
|
||||
}
|
||||
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
|
||||
|
||||
keccakf(h0, 24);
|
||||
keccakf(h1, 24);
|
||||
keccakf(h2, 24);
|
||||
keccakf(h3, 24);
|
||||
|
||||
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
||||
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
||||
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast<char*>(output) + 64);
|
||||
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast<char*>(output) + 96);
|
||||
}
|
||||
};
|
||||
|
||||
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
||||
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 5>
|
||||
{
|
||||
public:
|
||||
inline static void hash(const void* __restrict__ input,
|
||||
size_t size,
|
||||
void* __restrict__ output,
|
||||
cryptonight_ctx* __restrict__ ctx)
|
||||
{
|
||||
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
||||
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
||||
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
|
||||
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
|
||||
keccak((const uint8_t*) input + 4 * size, (int) size, ctx->state[4], 200);
|
||||
|
||||
const uint8_t* l0 = ctx->memory;
|
||||
const uint8_t* l1 = ctx->memory + MEM;
|
||||
const uint8_t* l2 = ctx->memory + 2 * MEM;
|
||||
const uint8_t* l3 = ctx->memory + 3 * MEM;
|
||||
const uint8_t* l4 = ctx->memory + 4 * MEM;
|
||||
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
||||
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
||||
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
|
||||
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
|
||||
uint64_t* h4 = reinterpret_cast<uint64_t*>(ctx->state[4]);
|
||||
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
|
||||
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
|
||||
|
||||
uint64_t al0 = h0[0] ^h0[4];
|
||||
uint64_t al1 = h1[0] ^h1[4];
|
||||
uint64_t al2 = h2[0] ^h2[4];
|
||||
uint64_t al3 = h3[0] ^h3[4];
|
||||
uint64_t al4 = h4[0] ^h4[4];
|
||||
uint64_t ah0 = h0[1] ^h0[5];
|
||||
uint64_t ah1 = h1[1] ^h1[5];
|
||||
uint64_t ah2 = h2[1] ^h2[5];
|
||||
uint64_t ah3 = h3[1] ^h3[5];
|
||||
uint64_t ah4 = h4[1] ^h4[5];
|
||||
|
||||
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
||||
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
||||
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
|
||||
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
|
||||
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
|
||||
|
||||
uint64_t idx0 = h0[0] ^h0[4];
|
||||
uint64_t idx1 = h1[0] ^h1[4];
|
||||
uint64_t idx2 = h2[0] ^h2[4];
|
||||
uint64_t idx3 = h3[0] ^h3[4];
|
||||
uint64_t idx4 = h4[0] ^h4[4];
|
||||
|
||||
for (size_t i = 0; i < ITERATIONS; i++) {
|
||||
__m128i cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
||||
__m128i cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
||||
__m128i cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
|
||||
__m128i cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
|
||||
__m128i cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
|
||||
|
||||
if (SOFT_AES) {
|
||||
cx0 = soft_aesenc(cx0, _mm_set_epi64x(ah0, al0));
|
||||
cx1 = soft_aesenc(cx1, _mm_set_epi64x(ah1, al1));
|
||||
cx2 = soft_aesenc(cx2, _mm_set_epi64x(ah2, al2));
|
||||
cx3 = soft_aesenc(cx3, _mm_set_epi64x(ah3, al3));
|
||||
cx4 = soft_aesenc(cx4, _mm_set_epi64x(ah4, al4));
|
||||
} else {
|
||||
# ifndef XMRIG_ARMv7
|
||||
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
||||
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
||||
cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2);
|
||||
cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3);
|
||||
cx4 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx4, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah4, al4);
|
||||
# endif;
|
||||
}
|
||||
|
||||
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
||||
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
||||
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
|
||||
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
|
||||
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
|
||||
|
||||
idx0 = EXTRACT64(cx0);
|
||||
idx1 = EXTRACT64(cx1);
|
||||
idx2 = EXTRACT64(cx2);
|
||||
idx3 = EXTRACT64(cx3);
|
||||
idx4 = EXTRACT64(cx4);
|
||||
|
||||
bx0 = cx0;
|
||||
bx1 = cx1;
|
||||
bx2 = cx2;
|
||||
bx3 = cx3;
|
||||
bx4 = cx4;
|
||||
|
||||
uint64_t hi, lo, cl, ch;
|
||||
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
||||
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
||||
lo = __umul128(idx0, cl, &hi);
|
||||
|
||||
al0 += hi;
|
||||
ah0 += lo;
|
||||
|
||||
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
||||
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
||||
|
||||
ah0 ^= ch;
|
||||
al0 ^= cl;
|
||||
idx0 = al0;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
||||
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
||||
lo = __umul128(idx1, cl, &hi);
|
||||
|
||||
al1 += hi;
|
||||
ah1 += lo;
|
||||
|
||||
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
||||
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
||||
|
||||
ah1 ^= ch;
|
||||
al1 ^= cl;
|
||||
idx1 = al1;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
|
||||
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
|
||||
lo = __umul128(idx2, cl, &hi);
|
||||
|
||||
al2 += hi;
|
||||
ah2 += lo;
|
||||
|
||||
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
|
||||
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
|
||||
|
||||
ah2 ^= ch;
|
||||
al2 ^= cl;
|
||||
idx2 = al2;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
|
||||
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
|
||||
lo = __umul128(idx3, cl, &hi);
|
||||
|
||||
al3 += hi;
|
||||
ah3 += lo;
|
||||
|
||||
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
|
||||
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
|
||||
|
||||
ah3 ^= ch;
|
||||
al3 ^= cl;
|
||||
idx3 = al3;
|
||||
|
||||
|
||||
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
|
||||
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
|
||||
lo = __umul128(idx4, cl, &hi);
|
||||
|
||||
al4 += hi;
|
||||
ah4 += lo;
|
||||
|
||||
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
|
||||
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
|
||||
|
||||
ah4 ^= ch;
|
||||
al4 ^= cl;
|
||||
idx4 = al4;
|
||||
}
|
||||
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
|
||||
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
|
||||
|
||||
keccakf(h0, 24);
|
||||
keccakf(h1, 24);
|
||||
keccakf(h2, 24);
|
||||
keccakf(h3, 24);
|
||||
keccakf(h4, 24);
|
||||
|
||||
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
||||
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
||||
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast<char*>(output) + 64);
|
||||
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast<char*>(output) + 96);
|
||||
extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, static_cast<char*>(output) + 128);
|
||||
}
|
||||
};
|
||||
|
||||
#endif /* __CRYPTONIGHT_ARM_H__ */
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue