Reduce libcpuid size.
This commit is contained in:
parent
b11f95d248
commit
da02e9a3a2
8 changed files with 28 additions and 1767 deletions
473
src/3rdparty/libcpuid/libcpuid.h
vendored
473
src/3rdparty/libcpuid/libcpuid.h
vendored
|
@ -610,39 +610,6 @@ void cpu_exec_cpuid_ext(uint32_t* regs);
|
|||
*/
|
||||
int cpuid_get_raw_data(struct cpu_raw_data_t* data);
|
||||
|
||||
/**
|
||||
* @brief Writes the raw CPUID data to a text file
|
||||
* @param data - a pointer to cpu_raw_data_t structure
|
||||
* @param filename - the path of the file, where the serialized data should be
|
||||
* written. If empty, stdout will be used.
|
||||
* @note This is intended primarily for debugging. On some processor, which is
|
||||
* not currently supported or not completely recognized by cpu_identify,
|
||||
* one can still successfully get the raw data and write it to a file.
|
||||
* libcpuid developers can later import this file and debug the detection
|
||||
* code as if running on the actual hardware.
|
||||
* The file is simple text format of "something=value" pairs. Version info
|
||||
* is also written, but the format is not intended to be neither backward-
|
||||
* nor forward compatible.
|
||||
* @returns zero if successful, and some negative number on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
int cpuid_serialize_raw_data(struct cpu_raw_data_t* data, const char* filename);
|
||||
|
||||
/**
|
||||
* @brief Reads raw CPUID data from file
|
||||
* @param data - a pointer to cpu_raw_data_t structure. The deserialized data will
|
||||
* be written here.
|
||||
* @param filename - the path of the file, containing the serialized raw data.
|
||||
* If empty, stdin will be used.
|
||||
* @note This function may fail, if the file is created by different version of
|
||||
* the library. Also, see the notes on cpuid_serialize_raw_data.
|
||||
* @returns zero if successful, and some negative number on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
int cpuid_deserialize_raw_data(struct cpu_raw_data_t* data, const char* filename);
|
||||
|
||||
/**
|
||||
* @brief Identifies the CPU
|
||||
* @param raw - Input - a pointer to the raw CPUID data, which is obtained
|
||||
|
@ -668,222 +635,6 @@ int cpuid_deserialize_raw_data(struct cpu_raw_data_t* data, const char* filename
|
|||
*/
|
||||
int cpu_identify(struct cpu_raw_data_t* raw, struct cpu_id_t* data);
|
||||
|
||||
/**
|
||||
* @brief Returns the short textual representation of a CPU flag
|
||||
* @param feature - the feature, whose textual representation is wanted.
|
||||
* @returns a constant string like "fpu", "tsc", "sse2", etc.
|
||||
* @note the names of the returned flags are compatible with those from
|
||||
* /proc/cpuinfo in Linux, with the exception of `tm_amd'
|
||||
*/
|
||||
const char* cpu_feature_str(cpu_feature_t feature);
|
||||
|
||||
/**
|
||||
* @brief Returns textual description of the last error
|
||||
*
|
||||
* libcpuid stores an `errno'-style error status, whose description
|
||||
* can be obtained with this function.
|
||||
* @note This function is not thread-safe
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
const char* cpuid_error(void);
|
||||
|
||||
/**
|
||||
* @brief Executes RDTSC
|
||||
*
|
||||
* The RDTSC (ReaD Time Stamp Counter) instruction gives access to an
|
||||
* internal 64-bit counter, which usually increments at each clock cycle.
|
||||
* This can be used for various timing routines, and as a very precise
|
||||
* clock source. It is set to zero on system startup. Beware that may not
|
||||
* increment at the same frequency as the CPU. Consecutive calls of RDTSC
|
||||
* are, however, guaranteed to return monotonically-increasing values.
|
||||
*
|
||||
* @param result - a pointer to a 64-bit unsigned integer, where the TSC value
|
||||
* will be stored
|
||||
*
|
||||
* @note If 100% compatibility is a concern, you must first check if the
|
||||
* RDTSC instruction is present (if it is not, your program will crash
|
||||
* with "invalid opcode" exception). Only some very old processors (i486,
|
||||
* early AMD K5 and some Cyrix CPUs) lack that instruction - they should
|
||||
* have become exceedingly rare these days. To verify RDTSC presence,
|
||||
* run cpu_identify() and check flags[CPU_FEATURE_TSC].
|
||||
*
|
||||
* @note The monotonically increasing nature of the TSC may be violated
|
||||
* on SMP systems, if their TSC clocks run at different rate. If the OS
|
||||
* doesn't account for that, the TSC drift may become arbitrary large.
|
||||
*/
|
||||
void cpu_rdtsc(uint64_t* result);
|
||||
|
||||
/**
|
||||
* @brief Store TSC and timing info
|
||||
*
|
||||
* This function stores the current TSC value and current
|
||||
* time info from a precise OS-specific clock source in the cpu_mark_t
|
||||
* structure. The sys_clock field contains time with microsecond resolution.
|
||||
* The values can later be used to measure time intervals, number of clocks,
|
||||
* FPU frequency, etc.
|
||||
* @see cpu_rdtsc
|
||||
*
|
||||
* @param mark [out] - a pointer to a cpu_mark_t structure
|
||||
*/
|
||||
void cpu_tsc_mark(struct cpu_mark_t* mark);
|
||||
|
||||
/**
|
||||
* @brief Calculate TSC and timing difference
|
||||
*
|
||||
* @param mark - input/output: a pointer to a cpu_mark_t sturcture, which has
|
||||
* already been initialized by cpu_tsc_mark. The difference in
|
||||
* TSC and time will be written here.
|
||||
*
|
||||
* This function calculates the TSC and time difference, by obtaining the
|
||||
* current TSC and timing values and subtracting the contents of the `mark'
|
||||
* structure from them. Results are written in the same structure.
|
||||
*
|
||||
* Example:
|
||||
* @code
|
||||
* ...
|
||||
* struct cpu_mark_t mark;
|
||||
* cpu_tsc_mark(&mark);
|
||||
* foo();
|
||||
* cpu_tsc_unmark(&mark);
|
||||
* printf("Foo finished. Executed in %llu cycles and %llu usecs\n",
|
||||
* mark.tsc, mark.sys_clock);
|
||||
* ...
|
||||
* @endcode
|
||||
*/
|
||||
void cpu_tsc_unmark(struct cpu_mark_t* mark);
|
||||
|
||||
/**
|
||||
* @brief Calculates the CPU clock
|
||||
*
|
||||
* @param mark - pointer to a cpu_mark_t structure, which has been initialized
|
||||
* with cpu_tsc_mark and later `stopped' with cpu_tsc_unmark.
|
||||
*
|
||||
* @note For reliable results, the marked time interval should be at least about
|
||||
* 10 ms.
|
||||
*
|
||||
* @returns the CPU clock frequency, in MHz. Due to measurement error, it will
|
||||
* differ from the true value in a few least-significant bits. Accuracy depends
|
||||
* on the timing interval - the more, the better. If the timing interval is
|
||||
* insufficient, the result is -1. Also, see the comment on cpu_clock_measure
|
||||
* for additional issues and pitfalls in using RDTSC for CPU frequency
|
||||
* measurements.
|
||||
*/
|
||||
int cpu_clock_by_mark(struct cpu_mark_t* mark);
|
||||
|
||||
/**
|
||||
* @brief Returns the CPU clock, as reported by the OS
|
||||
*
|
||||
* This function uses OS-specific functions to obtain the CPU clock. It may
|
||||
* differ from the true clock for several reasons:<br><br>
|
||||
*
|
||||
* i) The CPU might be in some power saving state, while the OS reports its
|
||||
* full-power frequency, or vice-versa.<br>
|
||||
* ii) In some cases you can raise or lower the CPU frequency with overclocking
|
||||
* utilities and the OS will not notice.
|
||||
*
|
||||
* @returns the CPU clock frequency in MHz. If the OS is not (yet) supported
|
||||
* or lacks the necessary reporting machinery, the return value is -1
|
||||
*/
|
||||
int cpu_clock_by_os(void);
|
||||
|
||||
/**
|
||||
* @brief Measure the CPU clock frequency
|
||||
*
|
||||
* @param millis - How much time to waste in the busy-wait cycle. In millisecs.
|
||||
* Useful values 10 - 1000
|
||||
* @param quad_check - Do a more thorough measurement if nonzero
|
||||
* (see the explanation).
|
||||
*
|
||||
* The function performs a busy-wait cycle for the given time and calculates
|
||||
* the CPU frequency by the difference of the TSC values. The accuracy of the
|
||||
* calculation depends on the length of the busy-wait cycle: more is better,
|
||||
* but 100ms should be enough for most purposes.
|
||||
*
|
||||
* While this will calculate the CPU frequency correctly in most cases, there are
|
||||
* several reasons why it might be incorrect:<br>
|
||||
*
|
||||
* i) RDTSC doesn't guarantee it will run at the same clock as the CPU.
|
||||
* Apparently there aren't CPUs at the moment, but still, there's no
|
||||
* guarantee.<br>
|
||||
* ii) The CPU might be in a low-frequency power saving mode, and the CPU
|
||||
* might be switched to higher frequency at any time. If this happens
|
||||
* during the measurement, the result can be anywhere between the
|
||||
* low and high frequencies. Also, if you're interested in the
|
||||
* high frequency value only, this function might return the low one
|
||||
* instead.<br>
|
||||
* iii) On SMP systems exhibiting TSC drift (see \ref cpu_rdtsc)
|
||||
*
|
||||
* the quad_check option will run four consecutive measurements and
|
||||
* then return the average of the two most-consistent results. The total
|
||||
* runtime of the function will still be `millis' - consider using
|
||||
* a bit more time for the timing interval.
|
||||
*
|
||||
* Finally, for benchmarking / CPU intensive applications, the best strategy is
|
||||
* to use the cpu_tsc_mark() / cpu_tsc_unmark() / cpu_clock_by_mark() method.
|
||||
* Begin by mark()-ing about one second after application startup (allowing the
|
||||
* power-saving manager to kick in and rise the frequency during that time),
|
||||
* then unmark() just before application finishing. The result will most
|
||||
* acurately represent at what frequency your app was running.
|
||||
*
|
||||
* @returns the CPU clock frequency in MHz (within some measurement error
|
||||
* margin). If RDTSC is not supported, the result is -1.
|
||||
*/
|
||||
int cpu_clock_measure(int millis, int quad_check);
|
||||
|
||||
/**
|
||||
* @brief Measure the CPU clock frequency using instruction-counting
|
||||
*
|
||||
* @param millis - how much time to allocate for each run, in milliseconds
|
||||
* @param runs - how many runs to perform
|
||||
*
|
||||
* The function performs a busy-wait cycle using a known number of "heavy" (SSE)
|
||||
* instructions. These instructions run at (more or less guaranteed) 1 IPC rate,
|
||||
* so by running a busy loop for a fixed amount of time, and measuring the
|
||||
* amount of instructions done, the CPU clock is accurately measured.
|
||||
*
|
||||
* Of course, this function is still affected by the power-saving schemes, so
|
||||
* the warnings as of cpu_clock_measure() still apply. However, this function is
|
||||
* immune to problems with detection, related to the Intel Nehalem's "Turbo"
|
||||
* mode, where the internal clock is raised, but the RDTSC rate is unaffected.
|
||||
*
|
||||
* The function will run for about (millis * runs) milliseconds.
|
||||
* You can make only a single busy-wait run (runs == 1); however, this can
|
||||
* be affected by task scheduling (which will break the counting), so allowing
|
||||
* more than one run is recommended. As run length is not imperative for
|
||||
* accurate readings (e.g., 50ms is sufficient), you can afford a lot of short
|
||||
* runs, e.g. 10 runs of 50ms or 20 runs of 25ms.
|
||||
*
|
||||
* Recommended values - millis = 50, runs = 4. For more robustness,
|
||||
* increase the number of runs.
|
||||
*
|
||||
* NOTE: on Bulldozer and later CPUs, the busy-wait cycle runs at 1.4 IPC, thus
|
||||
* the results are skewed. This is corrected internally by dividing the resulting
|
||||
* value by 1.4.
|
||||
* However, this only occurs if the thread is executed on a single CMT
|
||||
* module - if there are other threads competing for resources, the results are
|
||||
* unpredictable. Make sure you run cpu_clock_by_ic() on a CPU that is free from
|
||||
* competing threads, or if there are such threads, they shouldn't exceed the
|
||||
* number of modules. On a Bulldozer X8, that means 4 threads.
|
||||
*
|
||||
* @returns the CPU clock frequency in MHz (within some measurement error
|
||||
* margin). If SSE is not supported, the result is -1. If the input parameters
|
||||
* are incorrect, or some other internal fault is detected, the result is -2.
|
||||
*/
|
||||
int cpu_clock_by_ic(int millis, int runs);
|
||||
|
||||
/**
|
||||
* @brief Get the CPU clock frequency (all-in-one method)
|
||||
*
|
||||
* This is an all-in-one method for getting the CPU clock frequency.
|
||||
* It tries to use the OS for that. If the OS doesn't have this info, it
|
||||
* uses cpu_clock_measure with 200ms time interval and quadruple checking.
|
||||
*
|
||||
* @returns the CPU clock frequency in MHz. If every possible method fails,
|
||||
* the result is -1.
|
||||
*/
|
||||
int cpu_clock(void);
|
||||
|
||||
|
||||
/**
|
||||
* @brief The return value of cpuid_get_epc().
|
||||
* @details
|
||||
|
@ -916,230 +667,6 @@ struct cpu_epc_t cpuid_get_epc(int index, const struct cpu_raw_data_t* raw);
|
|||
*/
|
||||
const char* cpuid_lib_version(void);
|
||||
|
||||
typedef void (*libcpuid_warn_fn_t) (const char *msg);
|
||||
/**
|
||||
* @brief Sets the warning print function
|
||||
*
|
||||
* In some cases, the internal libcpuid machinery would like to emit useful
|
||||
* debug warnings. By default, these warnings are written to stderr. However,
|
||||
* you can set a custom function that will receive those warnings.
|
||||
*
|
||||
* @param warn_fun - the warning function you want to set. If NULL, warnings
|
||||
* are disabled. The function takes const char* argument.
|
||||
*
|
||||
* @returns the current warning function. You can use the return value to
|
||||
* keep the previous warning function and restore it at your discretion.
|
||||
*/
|
||||
libcpuid_warn_fn_t cpuid_set_warn_function(libcpuid_warn_fn_t warn_fun);
|
||||
|
||||
/**
|
||||
* @brief Sets the verbosiness level
|
||||
*
|
||||
* When the verbosiness level is above zero, some functions might print
|
||||
* diagnostic information about what are they doing. The higher the level is,
|
||||
* the more detail is printed. Level zero is guaranteed to omit all such
|
||||
* output. The output is written using the same machinery as the warnings,
|
||||
* @see cpuid_set_warn_function()
|
||||
*
|
||||
* @param level the desired verbosiness level. Useful values 0..2 inclusive
|
||||
*/
|
||||
void cpuid_set_verbosiness_level(int level);
|
||||
|
||||
|
||||
/**
|
||||
* @brief Obtains the CPU vendor from CPUID from the current CPU
|
||||
* @note The result is cached.
|
||||
* @returns VENDOR_UNKNOWN if failed, otherwise the CPU vendor type.
|
||||
* @see cpu_vendor_t
|
||||
*/
|
||||
cpu_vendor_t cpuid_get_vendor(void);
|
||||
|
||||
/**
|
||||
* @brief a structure that holds a list of processor names
|
||||
*/
|
||||
struct cpu_list_t {
|
||||
/** Number of entries in the list */
|
||||
int num_entries;
|
||||
/** Pointers to names. There will be num_entries of them */
|
||||
char **names;
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Gets a list of all known CPU names from a specific vendor.
|
||||
*
|
||||
* This function compiles a list of all known CPU (code)names
|
||||
* (i.e. the possible values of cpu_id_t::cpu_codename) for the given vendor.
|
||||
*
|
||||
* There are about 100 entries for Intel and AMD, and a few for the other
|
||||
* vendors. The list is written out in approximate chronological introduction
|
||||
* order of the parts.
|
||||
*
|
||||
* @param vendor the vendor to be queried
|
||||
* @param list [out] the resulting list will be written here.
|
||||
* NOTE: As the memory is dynamically allocated, be sure to call
|
||||
* cpuid_free_cpu_list() after you're done with the data
|
||||
* @see cpu_list_t
|
||||
*/
|
||||
void cpuid_get_cpu_list(cpu_vendor_t vendor, struct cpu_list_t* list);
|
||||
|
||||
/**
|
||||
* @brief Frees a CPU list
|
||||
*
|
||||
* This function deletes all the memory associated with a CPU list, as obtained
|
||||
* by cpuid_get_cpu_list()
|
||||
*
|
||||
* @param list - the list to be free()'d.
|
||||
*/
|
||||
void cpuid_free_cpu_list(struct cpu_list_t* list);
|
||||
|
||||
struct msr_driver_t;
|
||||
/**
|
||||
* @brief Starts/opens a driver, needed to read MSRs (Model Specific Registers)
|
||||
*
|
||||
* On systems that support it, this function will create a temporary
|
||||
* system driver, that has privileges to execute the RDMSR instruction.
|
||||
* After the driver is created, you can read MSRs by calling \ref cpu_rdmsr
|
||||
*
|
||||
* @returns a handle to the driver on success, and NULL on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
struct msr_driver_t* cpu_msr_driver_open(void);
|
||||
|
||||
/**
|
||||
* @brief Similar to \ref cpu_msr_driver_open, but accept one parameter
|
||||
*
|
||||
* This function works on certain operating systems (GNU/Linux, FreeBSD)
|
||||
*
|
||||
* @param core_num specify the core number for MSR.
|
||||
* The first core number is 0.
|
||||
* The last core number is \ref cpuid_get_total_cpus - 1.
|
||||
*
|
||||
* @returns a handle to the driver on success, and NULL on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
struct msr_driver_t* cpu_msr_driver_open_core(unsigned core_num);
|
||||
|
||||
/**
|
||||
* @brief Reads a Model-Specific Register (MSR)
|
||||
*
|
||||
* If the CPU has MSRs (as indicated by the CPU_FEATURE_MSR flag), you can
|
||||
* read a MSR with the given index by calling this function.
|
||||
*
|
||||
* There are several prerequisites you must do before reading MSRs:
|
||||
* 1) You must ensure the CPU has RDMSR. Check the CPU_FEATURE_MSR flag
|
||||
* in cpu_id_t::flags
|
||||
* 2) You must ensure that the CPU implements the specific MSR you intend to
|
||||
* read.
|
||||
* 3) You must open a MSR-reader driver. RDMSR is a privileged instruction and
|
||||
* needs ring-0 access in order to work. This temporary driver is created
|
||||
* by calling \ref cpu_msr_driver_open
|
||||
*
|
||||
* @param handle - a handle to the MSR reader driver, as created by
|
||||
* cpu_msr_driver_open
|
||||
* @param msr_index - the numeric ID of the MSR you want to read
|
||||
* @param result - a pointer to a 64-bit integer, where the MSR value is stored
|
||||
*
|
||||
* @returns zero if successful, and some negative number on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
int cpu_rdmsr(struct msr_driver_t* handle, uint32_t msr_index, uint64_t* result);
|
||||
|
||||
|
||||
typedef enum {
|
||||
INFO_MPERF, /*!< Maximum performance frequency clock. This
|
||||
is a counter, which increments as a
|
||||
proportion of the actual processor speed. */
|
||||
INFO_APERF, /*!< Actual performance frequency clock. This
|
||||
accumulates the core clock counts when the
|
||||
core is active. */
|
||||
INFO_MIN_MULTIPLIER, /*!< Minimum CPU:FSB ratio for this CPU,
|
||||
multiplied by 100. */
|
||||
INFO_CUR_MULTIPLIER, /*!< Current CPU:FSB ratio, multiplied by 100.
|
||||
e.g., a CPU:FSB value of 18.5 reads as
|
||||
"1850". */
|
||||
INFO_MAX_MULTIPLIER, /*!< Maximum CPU:FSB ratio for this CPU,
|
||||
multiplied by 100. */
|
||||
INFO_TEMPERATURE, /*!< The current core temperature in Celsius. */
|
||||
INFO_THROTTLING, /*!< 1 if the current logical processor is
|
||||
throttling. 0 if it is running normally. */
|
||||
INFO_VOLTAGE, /*!< The current core voltage in Volt,
|
||||
multiplied by 100. */
|
||||
INFO_BCLK, /*!< See \ref INFO_BUS_CLOCK. */
|
||||
INFO_BUS_CLOCK, /*!< The main bus clock in MHz,
|
||||
e.g., FSB/QPI/DMI/HT base clock,
|
||||
multiplied by 100. */
|
||||
} cpu_msrinfo_request_t;
|
||||
|
||||
/**
|
||||
* @brief Similar to \ref cpu_rdmsr, but extract a range of bits
|
||||
*
|
||||
* @param handle - a handle to the MSR reader driver, as created by
|
||||
* cpu_msr_driver_open
|
||||
* @param msr_index - the numeric ID of the MSR you want to read
|
||||
* @param highbit - the high bit in range, must be inferior to 64
|
||||
* @param lowbit - the low bit in range, must be equal or superior to 0
|
||||
* @param result - a pointer to a 64-bit integer, where the MSR value is stored
|
||||
*
|
||||
* @returns zero if successful, and some negative number on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
int cpu_rdmsr_range(struct msr_driver_t* handle, uint32_t msr_index, uint8_t highbit,
|
||||
uint8_t lowbit, uint64_t* result);
|
||||
|
||||
/**
|
||||
* @brief Reads extended CPU information from Model-Specific Registers.
|
||||
* @param handle - a handle to an open MSR driver, @see cpu_msr_driver_open
|
||||
* @param which - which info field should be returned. A list of
|
||||
* available information entities is listed in the
|
||||
* cpu_msrinfo_request_t enum.
|
||||
* @retval - if the requested information is available for the current
|
||||
* processor model, the respective value is returned.
|
||||
* if no information is available, or the CPU doesn't support
|
||||
* the query, the special value CPU_INVALID_VALUE is returned
|
||||
* @note This function is not MT-safe. If you intend to call it from multiple
|
||||
* threads, guard it through a mutex or a similar primitive.
|
||||
*/
|
||||
int cpu_msrinfo(struct msr_driver_t* handle, cpu_msrinfo_request_t which);
|
||||
#define CPU_INVALID_VALUE 0x3fffffff
|
||||
|
||||
/**
|
||||
* @brief Writes the raw MSR data to a text file
|
||||
* @param data - a pointer to msr_driver_t structure
|
||||
* @param filename - the path of the file, where the serialized data should be
|
||||
* written. If empty, stdout will be used.
|
||||
* @note This is intended primarily for debugging. On some processor, which is
|
||||
* not currently supported or not completely recognized by cpu_identify,
|
||||
* one can still successfully get the raw data and write it to a file.
|
||||
* libcpuid developers can later import this file and debug the detection
|
||||
* code as if running on the actual hardware.
|
||||
* The file is simple text format of "something=value" pairs. Version info
|
||||
* is also written, but the format is not intended to be neither backward-
|
||||
* nor forward compatible.
|
||||
* @returns zero if successful, and some negative number on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
int msr_serialize_raw_data(struct msr_driver_t* handle, const char* filename);
|
||||
|
||||
/**
|
||||
* @brief Closes an open MSR driver
|
||||
*
|
||||
* This function unloads the MSR driver opened by cpu_msr_driver_open and
|
||||
* frees any resources associated with it.
|
||||
*
|
||||
* @param handle - a handle to the MSR reader driver, as created by
|
||||
* cpu_msr_driver_open
|
||||
*
|
||||
* @returns zero if successful, and some negative number on error.
|
||||
* The error message can be obtained by calling \ref cpuid_error.
|
||||
* @see cpu_error_t
|
||||
*/
|
||||
int cpu_msr_driver_close(struct msr_driver_t* handle);
|
||||
|
||||
#ifdef __cplusplus
|
||||
}; /* extern "C" */
|
||||
#endif
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue