// Copyright (c) 2012-2013 The Cryptonote developers // Distributed under the MIT/X11 software license, see the accompanying // file COPYING or http://www.opensource.org/licenses/mit-license.php. // Portions Copyright (c) 2018 The Monero developers // Portions Copyright (c) 2018 The TurtleCoin Developers #include #include #include #include "crypto/oaes_lib.h" #include "crypto/c_keccak.h" #include "crypto/c_groestl.h" #include "crypto/c_blake256.h" #include "crypto/c_jh.h" #include "../../cn/c_skein.h" #include "crypto/int-util.h" #include "crypto/hash-ops.h" #include "crypto/variant2_int_sqrt.h" #if defined(_MSC_VER) #include #endif #define MEMORY 262144 /* 256KB - 2^18 */ #define ITER 131072 /* 2^17 */ #define ITER_DIV 65536 /* 2^16 */ #define AES_BLOCK_SIZE 16 #define AES_KEY_SIZE 32 /*16*/ #define INIT_SIZE_BLK 8 #define INIT_SIZE_BYTE (INIT_SIZE_BLK * AES_BLOCK_SIZE) #define CN_INIT (MEMORY / INIT_SIZE_BYTE) #define CN_AES_INIT (MEMORY / AES_BLOCK_SIZE) / 2 #define VARIANT1_1(p) \ do if (variant == 1) \ { \ const uint8_t tmp = ((const uint8_t*)(p))[11]; \ static const uint32_t table = 0x75310; \ const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; \ ((uint8_t*)(p))[11] = tmp ^ ((table >> index) & 0x30); \ } while(0) #define VARIANT1_2(p) \ do if (variant == 1) \ { \ ((uint64_t*)p)[1] ^= tweak1_2; \ } while(0) #define VARIANT1_INIT() \ if (variant == 1 && len < 43) \ { \ fprintf(stderr, "Cryptonight variant 1 needs at least 43 bytes of data"); \ _exit(1); \ } \ const uint64_t tweak1_2 = (variant == 1) ? *(const uint64_t*)(((const uint8_t*)input)+35) ^ ctx->state.hs.w[24] : 0 #define U64(p) ((uint64_t*)(p)) #define VARIANT2_INIT(b, state) \ uint64_t division_result; \ uint64_t sqrt_result; \ do if (variant >= 2) \ { \ U64(b)[2] = state.hs.w[8] ^ state.hs.w[10]; \ U64(b)[3] = state.hs.w[9] ^ state.hs.w[11]; \ division_result = state.hs.w[12]; \ sqrt_result = state.hs.w[13]; \ } while (0) #define VARIANT2_SHUFFLE_ADD(base_ptr, offset, a, b) \ do if (variant >= 2) \ { \ uint64_t* chunk1 = U64((base_ptr) + ((offset) ^ 0x10)); \ uint64_t* chunk2 = U64((base_ptr) + ((offset) ^ 0x20)); \ uint64_t* chunk3 = U64((base_ptr) + ((offset) ^ 0x30)); \ \ const uint64_t chunk1_old[2] = { chunk1[0], chunk1[1] }; \ \ chunk1[0] = chunk3[0] + U64(b + 16)[0]; \ chunk1[1] = chunk3[1] + U64(b + 16)[1]; \ \ chunk3[0] = chunk2[0] + U64(a)[0]; \ chunk3[1] = chunk2[1] + U64(a)[1]; \ \ chunk2[0] = chunk1_old[0] + U64(b)[0]; \ chunk2[1] = chunk1_old[1] + U64(b)[1]; \ } while (0) #define VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr) \ ((uint64_t*)(b))[0] ^= division_result ^ (sqrt_result << 32); \ { \ const uint64_t dividend = ((uint64_t*)(ptr))[1]; \ const uint32_t divisor = (((uint32_t*)(ptr))[0] + (uint32_t)(sqrt_result << 1)) | 0x80000001UL; \ division_result = ((uint32_t)(dividend / divisor)) + \ (((uint64_t)(dividend % divisor)) << 32); \ } \ const uint64_t sqrt_input = ((uint64_t*)(ptr))[0] + division_result #define VARIANT2_INTEGER_MATH(b, ptr) \ do if (variant >= 2) \ { \ VARIANT2_INTEGER_MATH_DIVISION_STEP(b, ptr); \ VARIANT2_INTEGER_MATH_SQRT_STEP_FP64(); \ VARIANT2_INTEGER_MATH_SQRT_FIXUP(sqrt_result); \ } while (0) #define VARIANT2_2() \ do if (variant >= 2) { \ ((uint64_t*)(ctx->long_state + ((j * AES_BLOCK_SIZE) ^ 0x10)))[0] ^= hi; \ ((uint64_t*)(ctx->long_state + ((j * AES_BLOCK_SIZE) ^ 0x10)))[1] ^= lo; \ hi ^= ((uint64_t*)(ctx->long_state + ((j * AES_BLOCK_SIZE) ^ 0x20)))[0]; \ lo ^= ((uint64_t*)(ctx->long_state + ((j * AES_BLOCK_SIZE) ^ 0x20)))[1]; \ } while (0) #pragma pack(push, 1) union cn_slow_hash_state { union hash_state hs; struct { uint8_t k[64]; uint8_t init[INIT_SIZE_BYTE]; }; }; #pragma pack(pop) static void do_turtle_lite_blake_hash(const void* input, size_t len, char* output) { blake256_hash((uint8_t*)output, input, len); } void do_turtle_lite_groestl_hash(const void* input, size_t len, char* output) { groestl(input, len * 8, (uint8_t*)output); } static void do_turtle_lite_jh_hash(const void* input, size_t len, char* output) { int r = jh_hash(HASH_SIZE * 8, input, 8 * len, (uint8_t*)output); assert(SUCCESS == r); } static void do_turtle_lite_skein_hash(const void* input, size_t len, char* output) { int r = skein_hash(8 * HASH_SIZE, input, 8 * len, (uint8_t*)output); assert(SKEIN_SUCCESS == r); } static void (* const extra_hashes[3])(const void *, size_t, char *) = { do_turtle_lite_blake_hash, do_turtle_lite_groestl_hash, do_turtle_lite_skein_hash }; extern int aesb_single_round(const uint8_t *in, uint8_t*out, const uint8_t *expandedKey); extern int aesb_pseudo_round(const uint8_t *in, uint8_t *out, const uint8_t *expandedKey); static inline size_t e2i(const uint8_t* a) { return (*((uint64_t*) a) / AES_BLOCK_SIZE) & (CN_AES_INIT - 1); } static void mul(const uint8_t* a, const uint8_t* b, uint8_t* res) { ((uint64_t*) res)[1] = mul128(((uint64_t*) a)[0], ((uint64_t*) b)[0], (uint64_t*) res); } static void sum_half_blocks(uint8_t* a, const uint8_t* b) { uint64_t a0, a1, b0, b1; a0 = SWAP64LE(((uint64_t*) a)[0]); a1 = SWAP64LE(((uint64_t*) a)[1]); b0 = SWAP64LE(((uint64_t*) b)[0]); b1 = SWAP64LE(((uint64_t*) b)[1]); a0 += b0; a1 += b1; ((uint64_t*) a)[0] = SWAP64LE(a0); ((uint64_t*) a)[1] = SWAP64LE(a1); } static inline void copy_block(uint8_t* dst, const uint8_t* src) { ((uint64_t*) dst)[0] = ((uint64_t*) src)[0]; ((uint64_t*) dst)[1] = ((uint64_t*) src)[1]; } static void swap_blocks(uint8_t* a, uint8_t* b) { size_t i; uint8_t t; for (i = 0; i < AES_BLOCK_SIZE; i++) { t = a[i]; a[i] = b[i]; b[i] = t; } } static inline void xor_blocks(uint8_t* a, const uint8_t* b) { ((uint64_t*) a)[0] ^= ((uint64_t*) b)[0]; ((uint64_t*) a)[1] ^= ((uint64_t*) b)[1]; } static inline void xor_blocks_dst(const uint8_t* a, const uint8_t* b, uint8_t* dst) { ((uint64_t*) dst)[0] = ((uint64_t*) a)[0] ^ ((uint64_t*) b)[0]; ((uint64_t*) dst)[1] = ((uint64_t*) a)[1] ^ ((uint64_t*) b)[1]; } struct cryptonightturtlelite_ctx { uint8_t long_state[MEMORY]; union cn_slow_hash_state state; uint8_t text[INIT_SIZE_BYTE]; uint8_t a[AES_BLOCK_SIZE]; uint8_t b[AES_BLOCK_SIZE * 2]; uint8_t c[AES_BLOCK_SIZE]; uint8_t aes_key[AES_KEY_SIZE]; oaes_ctx* aes_ctx; }; void cryptonightturtlelite_hash(const char* input, char* output, uint32_t len, int variant) { #if defined(_MSC_VER) struct cryptonightturtlelite_ctx *ctx = _malloca(sizeof(struct cryptonightturtlelite_ctx)); #else struct cryptonightturtlelite_ctx *ctx = alloca(sizeof(struct cryptonightturtlelite_ctx)); #endif hash_process(&ctx->state.hs, (const uint8_t*) input, len); memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); memcpy(ctx->aes_key, ctx->state.hs.b, AES_KEY_SIZE); ctx->aes_ctx = (oaes_ctx*) oaes_alloc(); size_t i, j; VARIANT1_INIT(); VARIANT2_INIT(ctx->b, ctx->state); oaes_key_import_data(ctx->aes_ctx, ctx->aes_key, AES_KEY_SIZE); for (i = 0; i < CN_INIT; i++) { for (j = 0; j < INIT_SIZE_BLK; j++) { aesb_pseudo_round(&ctx->text[AES_BLOCK_SIZE * j], &ctx->text[AES_BLOCK_SIZE * j], ctx->aes_ctx->key->exp_data); } memcpy(&ctx->long_state[i * INIT_SIZE_BYTE], ctx->text, INIT_SIZE_BYTE); } for (i = 0; i < 16; i++) { ctx->a[i] = ctx->state.k[i] ^ ctx->state.k[32 + i]; ctx->b[i] = ctx->state.k[16 + i] ^ ctx->state.k[48 + i]; } for (i = 0; i < ITER_DIV; i++) { /* Dependency chain: address -> read value ------+ * written value <-+ hard function (AES or MUL) <+ * next address <-+ */ /* Iteration 1 */ j = e2i(ctx->a); aesb_single_round(&ctx->long_state[j * AES_BLOCK_SIZE], ctx->c, ctx->a); VARIANT2_SHUFFLE_ADD(ctx->long_state, j * AES_BLOCK_SIZE, ctx->a, ctx->b); xor_blocks_dst(ctx->c, ctx->b, &ctx->long_state[j * AES_BLOCK_SIZE]); VARIANT1_1((uint8_t*)&ctx->long_state[j * AES_BLOCK_SIZE]); /* Iteration 2 */ j = e2i(ctx->c); uint64_t* dst = (uint64_t*)&ctx->long_state[j * AES_BLOCK_SIZE]; uint64_t t[2]; t[0] = dst[0]; t[1] = dst[1]; VARIANT2_INTEGER_MATH(t, ctx->c); uint64_t hi; uint64_t lo = mul128(((uint64_t*)ctx->c)[0], t[0], &hi); VARIANT2_2(); VARIANT2_SHUFFLE_ADD(ctx->long_state, j * AES_BLOCK_SIZE, ctx->a, ctx->b); ((uint64_t*)ctx->a)[0] += hi; ((uint64_t*)ctx->a)[1] += lo; dst[0] = ((uint64_t*)ctx->a)[0]; dst[1] = ((uint64_t*)ctx->a)[1]; ((uint64_t*)ctx->a)[0] ^= t[0]; ((uint64_t*)ctx->a)[1] ^= t[1]; VARIANT1_2((uint8_t*)&ctx->long_state[j * AES_BLOCK_SIZE]); copy_block(ctx->b + AES_BLOCK_SIZE, ctx->b); copy_block(ctx->b, ctx->c); } memcpy(ctx->text, ctx->state.init, INIT_SIZE_BYTE); oaes_key_import_data(ctx->aes_ctx, &ctx->state.hs.b[32], AES_KEY_SIZE); for (i = 0; i < CN_INIT; i++) { for (j = 0; j < INIT_SIZE_BLK; j++) { xor_blocks(&ctx->text[j * AES_BLOCK_SIZE], &ctx->long_state[i * INIT_SIZE_BYTE + j * AES_BLOCK_SIZE]); aesb_pseudo_round(&ctx->text[j * AES_BLOCK_SIZE], &ctx->text[j * AES_BLOCK_SIZE], ctx->aes_ctx->key->exp_data); } } memcpy(ctx->state.init, ctx->text, INIT_SIZE_BYTE); hash_permutation(&ctx->state.hs); /*memcpy(hash, &state, 32);*/ extra_hashes[ctx->state.hs.b[0] & 2](&ctx->state, 200, output); oaes_free((OAES_CTX **) &ctx->aes_ctx); } void cryptonightturtlelite_fast_hash(const char* input, char* output, uint32_t len) { union hash_state state; hash_process(&state, (const uint8_t*) input, len); memcpy(output, &state, HASH_SIZE); }