/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2019 XMR-Stak , * Copyright 2018-2020 SChernykh * Copyright 2016-2020 XMRig * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "crypto/cn/CnAlgo.h" #ifdef __GNUC__ # include #else # include # define __restrict__ __restrict #endif #ifndef _mm256_bslli_epi128 #define _mm256_bslli_epi128(a, count) _mm256_slli_si256((a), (count)) #endif #ifndef _mm256_bsrli_epi128 #define _mm256_bsrli_epi128(a, count) _mm256_srli_si256((a), (count)) #endif inline void prep_dv_avx(__m256i* idx, __m256i& v, __m256& n01) { v = _mm256_load_si256(idx); n01 = _mm256_cvtepi32_ps(v); } inline __m256 fma_break(const __m256& x) { // Break the dependency chain by setitng the exp to ?????01 __m256 xx = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0xFEFFFFFF)), x); return _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x00800000)), xx); } // 14 inline void sub_round(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3, const __m256& rnd_c, __m256& n, __m256& d, __m256& c) { __m256 nn = _mm256_mul_ps(n0, c); nn = _mm256_mul_ps(_mm256_add_ps(n1, c), _mm256_mul_ps(nn, nn)); nn = fma_break(nn); n = _mm256_add_ps(n, nn); __m256 dd = _mm256_mul_ps(n2, c); dd = _mm256_mul_ps(_mm256_sub_ps(n3, c), _mm256_mul_ps(dd, dd)); dd = fma_break(dd); d = _mm256_add_ps(d, dd); //Constant feedback c = _mm256_add_ps(c, rnd_c); c = _mm256_add_ps(c, _mm256_set1_ps(0.734375f)); __m256 r = _mm256_add_ps(nn, dd); r = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x807FFFFF)), r); r = _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x40000000)), r); c = _mm256_add_ps(c, r); } // 14*8 + 2 = 112 inline void round_compute(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3, const __m256& rnd_c, __m256& c, __m256& r) { __m256 n = _mm256_setzero_ps(), d = _mm256_setzero_ps(); sub_round(n0, n1, n2, n3, rnd_c, n, d, c); sub_round(n1, n2, n3, n0, rnd_c, n, d, c); sub_round(n2, n3, n0, n1, rnd_c, n, d, c); sub_round(n3, n0, n1, n2, rnd_c, n, d, c); sub_round(n3, n2, n1, n0, rnd_c, n, d, c); sub_round(n2, n1, n0, n3, rnd_c, n, d, c); sub_round(n1, n0, n3, n2, rnd_c, n, d, c); sub_round(n0, n3, n2, n1, rnd_c, n, d, c); // Make sure abs(d) > 2.0 - this prevents division by zero and accidental overflows by division by < 1.0 d = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0xFF7FFFFF)), d); d = _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x40000000)), d); r = _mm256_add_ps(r, _mm256_div_ps(n, d)); } // 112×4 = 448 template inline __m256i double_compute(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3, float lcnt, float hcnt, const __m256& rnd_c, __m256& sum) { __m256 c = _mm256_insertf128_ps(_mm256_castps128_ps256(_mm_set1_ps(lcnt)), _mm_set1_ps(hcnt), 1); __m256 r = _mm256_setzero_ps(); round_compute(n0, n1, n2, n3, rnd_c, c, r); round_compute(n0, n1, n2, n3, rnd_c, c, r); round_compute(n0, n1, n2, n3, rnd_c, c, r); round_compute(n0, n1, n2, n3, rnd_c, c, r); // do a quick fmod by setting exp to 2 r = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x807FFFFF)), r); r = _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x40000000)), r); if(add) sum = _mm256_add_ps(sum, r); else sum = r; r = _mm256_mul_ps(r, _mm256_set1_ps(536870880.0f)); // 35 return _mm256_cvttps_epi32(r); } template inline void double_compute_wrap(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3, float lcnt, float hcnt, const __m256& rnd_c, __m256& sum, __m256i& out) { __m256i r = double_compute(n0, n1, n2, n3, lcnt, hcnt, rnd_c, sum); if(rot != 0) r = _mm256_or_si256(_mm256_bslli_epi128(r, 16 - rot), _mm256_bsrli_epi128(r, rot)); out = _mm256_xor_si256(out, r); } template inline __m256i* scratchpad_ptr(uint8_t* lpad, uint32_t idx, size_t n) { return reinterpret_cast<__m256i*>(lpad + (idx & MASK) + n*16); } template void cn_gpu_inner_avx(const uint8_t* spad, uint8_t* lpad) { uint32_t s = reinterpret_cast(spad)[0] >> 8; __m256i* idx0 = scratchpad_ptr(lpad, s, 0); __m256i* idx2 = scratchpad_ptr(lpad, s, 2); __m256 sum0 = _mm256_setzero_ps(); for(size_t i = 0; i < ITER; i++) { __m256i v01, v23; __m256 suma, sumb, sum1; __m256 rc = sum0; __m256 n01, n23; prep_dv_avx(idx0, v01, n01); prep_dv_avx(idx2, v23, n23); __m256i out, out2; __m256 n10, n22, n33; n10 = _mm256_permute2f128_ps(n01, n01, 0x01); n22 = _mm256_permute2f128_ps(n23, n23, 0x00); n33 = _mm256_permute2f128_ps(n23, n23, 0x11); out = _mm256_setzero_si256(); double_compute_wrap<0>(n01, n10, n22, n33, 1.3437500f, 1.4296875f, rc, suma, out); double_compute_wrap<1>(n01, n22, n33, n10, 1.2812500f, 1.3984375f, rc, suma, out); double_compute_wrap<2>(n01, n33, n10, n22, 1.3593750f, 1.3828125f, rc, sumb, out); double_compute_wrap<3>(n01, n33, n22, n10, 1.3671875f, 1.3046875f, rc, sumb, out); _mm256_store_si256(idx0, _mm256_xor_si256(v01, out)); sum0 = _mm256_add_ps(suma, sumb); out2 = out; __m256 n11, n02, n30; n11 = _mm256_permute2f128_ps(n01, n01, 0x11); n02 = _mm256_permute2f128_ps(n01, n23, 0x20); n30 = _mm256_permute2f128_ps(n01, n23, 0x03); out = _mm256_setzero_si256(); double_compute_wrap<0>(n23, n11, n02, n30, 1.4140625f, 1.3203125f, rc, suma, out); double_compute_wrap<1>(n23, n02, n30, n11, 1.2734375f, 1.3515625f, rc, suma, out); double_compute_wrap<2>(n23, n30, n11, n02, 1.2578125f, 1.3359375f, rc, sumb, out); double_compute_wrap<3>(n23, n30, n02, n11, 1.2890625f, 1.4609375f, rc, sumb, out); _mm256_store_si256(idx2, _mm256_xor_si256(v23, out)); sum1 = _mm256_add_ps(suma, sumb); out2 = _mm256_xor_si256(out2, out); out2 = _mm256_xor_si256(_mm256_permute2x128_si256(out2,out2,0x41), out2); suma = _mm256_permute2f128_ps(sum0, sum1, 0x30); sumb = _mm256_permute2f128_ps(sum0, sum1, 0x21); sum0 = _mm256_add_ps(suma, sumb); sum0 = _mm256_add_ps(sum0, _mm256_permute2f128_ps(sum0, sum0, 0x41)); // Clear the high 128 bits __m128 sum = _mm256_castps256_ps128(sum0); sum = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)), sum); // take abs(va) by masking the float sign bit // vs range 0 - 64 __m128i v0 = _mm_cvttps_epi32(_mm_mul_ps(sum, _mm_set1_ps(16777216.0f))); v0 = _mm_xor_si128(v0, _mm256_castsi256_si128(out2)); __m128i v1 = _mm_shuffle_epi32(v0, _MM_SHUFFLE(0, 1, 2, 3)); v0 = _mm_xor_si128(v0, v1); v1 = _mm_shuffle_epi32(v0, _MM_SHUFFLE(0, 1, 0, 1)); v0 = _mm_xor_si128(v0, v1); // vs is now between 0 and 1 sum = _mm_div_ps(sum, _mm_set1_ps(64.0f)); sum0 = _mm256_insertf128_ps(_mm256_castps128_ps256(sum), sum, 1); uint32_t n = _mm_cvtsi128_si32(v0); idx0 = scratchpad_ptr(lpad, n, 0); idx2 = scratchpad_ptr(lpad, n, 2); } } template void cn_gpu_inner_avx().iterations(), xmrig::CnAlgo().mask()>(const uint8_t* spad, uint8_t* lpad);