/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2018 XMR-Stak , * Copyright 2018-2024 SChernykh * Copyright 2016-2024 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "backend/cuda/runners/CudaRxRunner.h" #include "backend/cuda/CudaLaunchData.h" #include "backend/cuda/wrappers/CudaLib.h" #include "base/net/stratum/Job.h" #include "crypto/rx/Rx.h" #include "crypto/rx/RxDataset.h" xmrig::CudaRxRunner::CudaRxRunner(size_t index, const CudaLaunchData &data) : CudaBaseRunner(index, data), m_datasetHost(data.thread.datasetHost() > 0) { m_intensity = m_data.thread.threads() * m_data.thread.blocks(); const size_t scratchpads_size = m_intensity * m_data.algorithm.l3(); const size_t num_scratchpads = scratchpads_size / m_data.algorithm.l3(); if (m_intensity > num_scratchpads) { m_intensity = num_scratchpads; } m_intensity -= m_intensity % 32; } bool xmrig::CudaRxRunner::run(uint32_t startNonce, uint32_t *rescount, uint32_t *resnonce) { return callWrapper(CudaLib::rxHash(m_ctx, startNonce, m_target, rescount, resnonce)); } bool xmrig::CudaRxRunner::set(const Job &job, uint8_t *blob) { if (!m_datasetHost && (m_seed != job.seed())) { m_seed = job.seed(); if (m_ready) { const auto *dataset = Rx::dataset(job, 0); callWrapper(CudaLib::rxUpdateDataset(m_ctx, dataset->raw(), dataset->size(false))); } } const bool rc = CudaBaseRunner::set(job, blob); if (!rc || m_ready) { return rc; } const auto *dataset = Rx::dataset(job, 0); m_ready = callWrapper(CudaLib::rxPrepare(m_ctx, dataset->raw(), dataset->size(false), m_datasetHost, m_intensity)); return m_ready; }