/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2016 Imran Yusuff * Copyright 2016-2017 XMRig * Copyright 2018 Sebastian Stolzenberg * Copyright 2018 BenDroid * * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef __CRYPTONIGHT_ARM_H__ #define __CRYPTONIGHT_ARM_H__ #if defined(XMRIG_ARM) && !defined(__clang__) # include "aligned_malloc.h" #else # include #endif #include "crypto/CryptoNight.h" #include "crypto/CryptoNight_monero.h" #include "crypto/soft_aes.h" extern "C" { #include "crypto/c_keccak.h" #include "crypto/c_groestl.h" #include "crypto/c_blake256.h" #include "crypto/c_jh.h" #include "crypto/c_skein.h" } static inline void do_blake_hash(const void* input, size_t len, char* output) { blake256_hash(reinterpret_cast(output), static_cast(input), len); } static inline void do_groestl_hash(const void* input, size_t len, char* output) { groestl(static_cast(input), len * 8, reinterpret_cast(output)); } static inline void do_jh_hash(const void* input, size_t len, char* output) { jh_hash(32 * 8, static_cast(input), 8 * len, reinterpret_cast(output)); } static inline void do_skein_hash(const void* input, size_t len, char* output) { xmr_skein(static_cast(input), reinterpret_cast(output)); } void (* const extra_hashes[4])(const void*, size_t, char*) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash}; static inline __attribute__((always_inline)) __m128i _mm_set_epi64x(const uint64_t a, const uint64_t b) { return vcombine_u64(vcreate_u64(b), vcreate_u64(a)); } /* this one was not implemented yet so here it is */ static inline __attribute__((always_inline)) uint64_t _mm_cvtsi128_si64(__m128i a) { return vgetq_lane_u64(a, 0); } #define EXTRACT64(X) _mm_cvtsi128_si64(X) #if defined(XMRIG_ARMv8) static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi) { unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b; *hi = r >> 64; return (uint64_t) r; } #else static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi) { // multiplier = ab = a * 2^32 + b // multiplicand = cd = c * 2^32 + d // ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d uint64_t a = multiplier >> 32; uint64_t b = multiplier & 0xFFFFFFFF; uint64_t c = multiplicand >> 32; uint64_t d = multiplicand & 0xFFFFFFFF; //uint64_t ac = a * c; uint64_t ad = a * d; //uint64_t bc = b * c; uint64_t bd = b * d; uint64_t adbc = ad + (b * c); uint64_t adbc_carry = adbc < ad ? 1 : 0; // multiplier * multiplicand = product_hi * 2^64 + product_lo uint64_t product_lo = bd + (adbc << 32); uint64_t product_lo_carry = product_lo < bd ? 1 : 0; *product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry; return product_lo; } #endif // This will shift and xor tmp1 into itself as 4 32-bit vals such as // sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1) static inline __m128i sl_xor(__m128i tmp1) { __m128i tmp4; tmp4 = _mm_slli_si128(tmp1, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); return tmp1; } template static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2) { // __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon); // xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem // *xout0 = sl_xor(*xout0); // *xout0 = _mm_xor_si128(*xout0, xout1); // xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00); // xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem // *xout2 = sl_xor(*xout2); // *xout2 = _mm_xor_si128(*xout2, xout1); } template static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2) { __m128i xout1 = soft_aeskeygenassist(*xout2); xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem *xout0 = sl_xor(*xout0); *xout0 = _mm_xor_si128(*xout0, xout1); xout1 = soft_aeskeygenassist<0x00>(*xout0); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem *xout2 = sl_xor(*xout2); *xout2 = _mm_xor_si128(*xout2, xout1); } template static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9) { __m128i xout0 = _mm_load_si128(memory); __m128i xout2 = _mm_load_si128(memory + 1); *k0 = xout0; *k1 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : soft_aes_genkey_sub<0x01>(&xout0, &xout2); *k2 = xout0; *k3 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : soft_aes_genkey_sub<0x02>(&xout0, &xout2); *k4 = xout0; *k5 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : soft_aes_genkey_sub<0x04>(&xout0, &xout2); *k6 = xout0; *k7 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : soft_aes_genkey_sub<0x08>(&xout0, &xout2); *k8 = xout0; *k9 = xout2; } template static inline void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) { if (SOFT_AES) { *x0 = soft_aesenc((uint32_t*)x0, key); *x1 = soft_aesenc((uint32_t*)x1, key); *x2 = soft_aesenc((uint32_t*)x2, key); *x3 = soft_aesenc((uint32_t*)x3, key); *x4 = soft_aesenc((uint32_t*)x4, key); *x5 = soft_aesenc((uint32_t*)x5, key); *x6 = soft_aesenc((uint32_t*)x6, key); *x7 = soft_aesenc((uint32_t*)x7, key); } # ifndef XMRIG_ARMv7 else { *x0 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x0), key)); *x1 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x1), key)); *x2 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x2), key)); *x3 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x3), key)); *x4 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x4), key)); *x5 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x5), key)); *x6 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x6), key)); *x7 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x7), key)); } # endif } template static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output) { __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xin0 = _mm_load_si128(input + 4); xin1 = _mm_load_si128(input + 5); xin2 = _mm_load_si128(input + 6); xin3 = _mm_load_si128(input + 7); xin4 = _mm_load_si128(input + 8); xin5 = _mm_load_si128(input + 9); xin6 = _mm_load_si128(input + 10); xin7 = _mm_load_si128(input + 11); for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { if (!SOFT_AES) { aes_round(_mm_setzero_si128(), &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); } aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); if (!SOFT_AES) { xin0 ^= k9; xin1 ^= k9; xin2 ^= k9; xin3 ^= k9; xin4 ^= k9; xin5 ^= k9; xin6 ^= k9; xin7 ^= k9; } else { aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); } _mm_store_si128(output + i + 0, xin0); _mm_store_si128(output + i + 1, xin1); _mm_store_si128(output + i + 2, xin2); _mm_store_si128(output + i + 3, xin3); _mm_store_si128(output + i + 4, xin4); _mm_store_si128(output + i + 5, xin5); _mm_store_si128(output + i + 6, xin6); _mm_store_si128(output + i + 7, xin7); } } template static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output) { __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xout0 = _mm_load_si128(output + 4); xout1 = _mm_load_si128(output + 5); xout2 = _mm_load_si128(output + 6); xout3 = _mm_load_si128(output + 7); xout4 = _mm_load_si128(output + 8); xout5 = _mm_load_si128(output + 9); xout6 = _mm_load_si128(output + 10); xout7 = _mm_load_si128(output + 11); for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) { xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0); xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1); xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2); xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3); xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4); xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5); xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6); xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7); if (!SOFT_AES) { aes_round(_mm_setzero_si128(), &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); } aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); if (!SOFT_AES) { xout0 ^= k9; xout1 ^= k9; xout2 ^= k9; xout3 ^= k9; xout4 ^= k9; xout5 ^= k9; xout6 ^= k9; xout7 ^= k9; } else { aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); } } _mm_store_si128(output + 4, xout0); _mm_store_si128(output + 5, xout1); _mm_store_si128(output + 6, xout2); _mm_store_si128(output + 7, xout3); _mm_store_si128(output + 8, xout4); _mm_store_si128(output + 9, xout5); _mm_store_si128(output + 10, xout6); _mm_store_si128(output + 11, xout7); } // n-Loop version. Seems to be little bit slower then the hardcoded one. template class CryptoNightMultiHash { public: inline static void hash(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { const uint8_t* l[NUM_HASH_BLOCKS]; uint64_t* h[NUM_HASH_BLOCKS]; uint64_t al[NUM_HASH_BLOCKS]; uint64_t ah[NUM_HASH_BLOCKS]; __m128i bx[NUM_HASH_BLOCKS]; uint64_t idx[NUM_HASH_BLOCKS]; uint64_t tweak1_2[NUM_HASH_BLOCKS]; uint64_t version[NUM_HASH_BLOCKS]; for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) { keccak(static_cast(input) + hashBlock * size, (int) size, ctx->state[hashBlock], 200); version[hashBlock] = static_cast(input)[hashBlock * size]; /*if (MONERO)*/ { if (version[hashBlock] > 6) { tweak1_2[hashBlock] = (*reinterpret_cast(reinterpret_cast(input) + 35 + hashBlock * size) ^ *(reinterpret_cast(ctx->state[hashBlock]) + 24)); } } } for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) { l[hashBlock] = ctx->memory + hashBlock * MEM; h[hashBlock] = reinterpret_cast(ctx->state[hashBlock]); cn_explode_scratchpad((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]); al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4]; ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5]; bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]); idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4]; } for (size_t i = 0; i < ITERATIONS; i++) { for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) { __m128i cx; if (SOFT_AES) { cx = soft_aesenc(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock])); } else { cx = _mm_load_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK]); cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock])); } _mm_store_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK], _mm_xor_si128(bx[hashBlock], cx)); /*if (MONERO)*/ { if (version[hashBlock] > 6) { const uint8_t tmp = reinterpret_cast(&l[hashBlock][idx[hashBlock] & MASK])[11]; static const uint32_t table = 0x75310; const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l[hashBlock][idx[hashBlock] & MASK]))[11] = tmp ^ ((table >> index) & 0x30); } } idx[hashBlock] = EXTRACT64(cx); bx[hashBlock] = cx; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0]; ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1]; lo = __umul128(idx[hashBlock], cl, &hi); al[hashBlock] += hi; ah[hashBlock] += lo; /*if (MONERO)*/ { if (version[hashBlock] > 6) { ah[hashBlock] ^= tweak1_2[hashBlock]; } } ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock]; ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock]; /*if (MONERO)*/ { if (version[hashBlock] > 6) { ah[hashBlock] ^= tweak1_2[hashBlock]; } } ah[hashBlock] ^= ch; al[hashBlock] ^= cl; idx[hashBlock] = al[hashBlock]; } } for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) { cn_implode_scratchpad((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]); keccakf(h[hashBlock], 24); extra_hashes[ctx->state[hashBlock][0] & 3](ctx->state[hashBlock], 200, static_cast(output) + hashBlock * 32); } } inline static void hashPowV2(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { return hash(input, size, output, ctx); } }; template class CryptoNightMultiHash { public: inline static void hash(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { const uint8_t* l; uint64_t* h; uint64_t al; uint64_t ah; __m128i bx; uint64_t idx; keccak(static_cast(input), (int) size, ctx->state[0], 200); l = ctx->memory; h = reinterpret_cast(ctx->state[0]); cn_explode_scratchpad((__m128i*) h, (__m128i*) l); al = h[0] ^ h[4]; ah = h[1] ^ h[5]; bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]); idx = h[0] ^ h[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx; if (SOFT_AES) { cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al)); } else { cx = _mm_load_si128((__m128i *) &l[idx & MASK]); # ifndef XMRIG_ARMv7 cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah, al); # endif } _mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx)); idx = EXTRACT64(cx); bx = cx; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l[idx & MASK])[0]; ch = ((uint64_t*) &l[idx & MASK])[1]; lo = __umul128(idx, cl, &hi); al += hi; ah += lo; ((uint64_t*) &l[idx & MASK])[0] = al; ((uint64_t*) &l[idx & MASK])[1] = ah; ah ^= ch; al ^= cl; idx = al; } cn_implode_scratchpad((__m128i*) l, (__m128i*) h); keccakf(h, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); } inline static void hashPowV2(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { const uint8_t* l; uint64_t* h; uint64_t al; uint64_t ah; __m128i bx; uint64_t idx; keccak(static_cast(input), (int) size, ctx->state[0], 200); uint64_t tweak1_2 = (*reinterpret_cast(reinterpret_cast(input) + 35) ^ *(reinterpret_cast(ctx->state[0]) + 24)); l = ctx->memory; h = reinterpret_cast(ctx->state[0]); cn_explode_scratchpad((__m128i*) h, (__m128i*) l); al = h[0] ^ h[4]; ah = h[1] ^ h[5]; bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]); idx = h[0] ^ h[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx; if (SOFT_AES) { cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al)); } else { cx = _mm_load_si128((__m128i *) &l[idx & MASK]); # ifndef XMRIG_ARMv7 cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah, al); # endif } _mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx)); const uint8_t tmp = reinterpret_cast(&l[idx & MASK])[11]; static const uint32_t table = 0x75310; const uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l[idx & MASK]))[11] = tmp ^ ((table >> index) & 0x30); idx = EXTRACT64(cx); bx = cx; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l[idx & MASK])[0]; ch = ((uint64_t*) &l[idx & MASK])[1]; lo = __umul128(idx, cl, &hi); al += hi; ah += lo; ah ^= tweak1_2; ((uint64_t*) &l[idx & MASK])[0] = al; ((uint64_t*) &l[idx & MASK])[1] = ah; ah ^= tweak1_2; ah ^= ch; al ^= cl; idx = al; } cn_implode_scratchpad((__m128i*) l, (__m128i*) h); keccakf(h, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); } }; template class CryptoNightMultiHash { public: inline static void hash(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); } else { cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]); # ifndef XMRIG_ARMv7 cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); bx0 = cx0; bx1 = cx1; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= ch; al1 ^= cl; idx1 = al1; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); keccakf(h0, 24); keccakf(h1, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); } inline static void hashPowV2(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); uint64_t tweak1_2_0 = (*reinterpret_cast(reinterpret_cast(input) + 35) ^ *(reinterpret_cast(ctx->state[0]) + 24)); uint64_t tweak1_2_1 = (*reinterpret_cast(reinterpret_cast(input) + 35 + size) ^ *(reinterpret_cast(ctx->state[1]) + 24)); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); } else { cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]); # ifndef XMRIG_ARMv7 cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); static const uint32_t table = 0x75310; uint8_t tmp = reinterpret_cast(&l0[idx0 & MASK])[11]; uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l1[idx1 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); bx0 = cx0; bx1 = cx1; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ah0 ^= tweak1_2_0; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= tweak1_2_0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ah1 ^= tweak1_2_1; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= tweak1_2_1; ah1 ^= ch; al1 ^= cl; idx1 = al1; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); keccakf(h0, 24); keccakf(h1, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); } }; template class CryptoNightMultiHash { public: inline static void hash(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l2 = ctx->memory + 2 * MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); uint64_t* h2 = reinterpret_cast(ctx->state[2]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad((__m128i*) h2, (__m128i*) l2); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t al2 = h2[0] ^h2[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; uint64_t ah2 = h2[1] ^h2[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; uint64_t idx2 = h2[0] ^h2[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; __m128i cx2; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2)); } else { cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]); cx2 = _mm_load_si128((__m128i *) &l2[idx2 & MASK]); # ifndef XMRIG_ARMv7 cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); _mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2)); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); idx2 = EXTRACT64(cx2); bx0 = cx0; bx1 = cx1; bx2 = cx2; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= ch; al1 ^= cl; idx1 = al1; cl = ((uint64_t*) &l2[idx2 & MASK])[0]; ch = ((uint64_t*) &l2[idx2 & MASK])[1]; lo = __umul128(idx2, cl, &hi); al2 += hi; ah2 += lo; ((uint64_t*) &l2[idx2 & MASK])[0] = al2; ((uint64_t*) &l2[idx2 & MASK])[1] = ah2; ah2 ^= ch; al2 ^= cl; idx2 = al2; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); cn_implode_scratchpad((__m128i*) l2, (__m128i*) h2); keccakf(h0, 24); keccakf(h1, 24); keccakf(h2, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast(output) + 64); } inline static void hashPowV2(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200); uint64_t tweak1_2_0 = (*reinterpret_cast(reinterpret_cast(input) + 35) ^ *(reinterpret_cast(ctx->state[0]) + 24)); uint64_t tweak1_2_1 = (*reinterpret_cast(reinterpret_cast(input) + 35 + size) ^ *(reinterpret_cast(ctx->state[1]) + 24)); uint64_t tweak1_2_2 = (*reinterpret_cast(reinterpret_cast(input) + 35 + 2 * size) ^ *(reinterpret_cast(ctx->state[2]) + 24)); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l2 = ctx->memory + 2 * MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); uint64_t* h2 = reinterpret_cast(ctx->state[2]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad((__m128i*) h2, (__m128i*) l2); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t al2 = h2[0] ^h2[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; uint64_t ah2 = h2[1] ^h2[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; uint64_t idx2 = h2[0] ^h2[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; __m128i cx2; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2)); } else { cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]); cx2 = _mm_load_si128((__m128i *) &l2[idx2 & MASK]); # ifndef XMRIG_ARMv7 cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); _mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2)); static const uint32_t table = 0x75310; uint8_t tmp = reinterpret_cast(&l0[idx0 & MASK])[11]; uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l1[idx1 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l2[idx2 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); idx2 = EXTRACT64(cx2); bx0 = cx0; bx1 = cx1; bx2 = cx2; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ah0 ^= tweak1_2_0; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= tweak1_2_0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ah1 ^= tweak1_2_1; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= tweak1_2_1; ah1 ^= ch; al1 ^= cl; idx1 = al1; cl = ((uint64_t*) &l2[idx2 & MASK])[0]; ch = ((uint64_t*) &l2[idx2 & MASK])[1]; lo = __umul128(idx2, cl, &hi); al2 += hi; ah2 += lo; ah2 ^= tweak1_2_2; ((uint64_t*) &l2[idx2 & MASK])[0] = al2; ((uint64_t*) &l2[idx2 & MASK])[1] = ah2; ah2 ^= tweak1_2_2; ah2 ^= ch; al2 ^= cl; idx2 = al2; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); cn_implode_scratchpad((__m128i*) l2, (__m128i*) h2); keccakf(h0, 24); keccakf(h1, 24); keccakf(h2, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast(output) + 64); } }; template class CryptoNightMultiHash { public: inline static void hash(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200); keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l2 = ctx->memory + 2 * MEM; const uint8_t* l3 = ctx->memory + 3 * MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); uint64_t* h2 = reinterpret_cast(ctx->state[2]); uint64_t* h3 = reinterpret_cast(ctx->state[3]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad((__m128i*) h2, (__m128i*) l2); cn_explode_scratchpad((__m128i*) h3, (__m128i*) l3); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t al2 = h2[0] ^h2[4]; uint64_t al3 = h3[0] ^h3[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; uint64_t ah2 = h2[1] ^h2[5]; uint64_t ah3 = h3[1] ^h3[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]); __m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; uint64_t idx2 = h2[0] ^h2[4]; uint64_t idx3 = h3[0] ^h3[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; __m128i cx2; __m128i cx3; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2)); cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3)); } else { # ifndef XMRIG_ARMv7 cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]); cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]); cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]); cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2); cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); _mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2)); _mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3)); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); idx2 = EXTRACT64(cx2); idx3 = EXTRACT64(cx3); bx0 = cx0; bx1 = cx1; bx2 = cx2; bx3 = cx3; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= ch; al1 ^= cl; idx1 = al1; cl = ((uint64_t*) &l2[idx2 & MASK])[0]; ch = ((uint64_t*) &l2[idx2 & MASK])[1]; lo = __umul128(idx2, cl, &hi); al2 += hi; ah2 += lo; ((uint64_t*) &l2[idx2 & MASK])[0] = al2; ((uint64_t*) &l2[idx2 & MASK])[1] = ah2; ah2 ^= ch; al2 ^= cl; idx2 = al2; cl = ((uint64_t*) &l3[idx3 & MASK])[0]; ch = ((uint64_t*) &l3[idx3 & MASK])[1]; lo = __umul128(idx3, cl, &hi); al3 += hi; ah3 += lo; ((uint64_t*) &l3[idx3 & MASK])[0] = al3; ((uint64_t*) &l3[idx3 & MASK])[1] = ah3; ah3 ^= ch; al3 ^= cl; idx3 = al3; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); cn_implode_scratchpad((__m128i*) l2, (__m128i*) h2); cn_implode_scratchpad((__m128i*) l3, (__m128i*) h3); keccakf(h0, 24); keccakf(h1, 24); keccakf(h2, 24); keccakf(h3, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast(output) + 64); extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast(output) + 96); } inline static void hashPowV2(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200); keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200); uint64_t tweak1_2_0 = (*reinterpret_cast(reinterpret_cast(input) + 35) ^ *(reinterpret_cast(ctx->state[0]) + 24)); uint64_t tweak1_2_1 = (*reinterpret_cast(reinterpret_cast(input) + 35 + size) ^ *(reinterpret_cast(ctx->state[1]) + 24)); uint64_t tweak1_2_2 = (*reinterpret_cast(reinterpret_cast(input) + 35 + 2 * size) ^ *(reinterpret_cast(ctx->state[2]) + 24)); uint64_t tweak1_2_3 = (*reinterpret_cast(reinterpret_cast(input) + 35 + 3 * size) ^ *(reinterpret_cast(ctx->state[3]) + 24)); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l2 = ctx->memory + 2 * MEM; const uint8_t* l3 = ctx->memory + 3 * MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); uint64_t* h2 = reinterpret_cast(ctx->state[2]); uint64_t* h3 = reinterpret_cast(ctx->state[3]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad((__m128i*) h2, (__m128i*) l2); cn_explode_scratchpad((__m128i*) h3, (__m128i*) l3); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t al2 = h2[0] ^h2[4]; uint64_t al3 = h3[0] ^h3[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; uint64_t ah2 = h2[1] ^h2[5]; uint64_t ah3 = h3[1] ^h3[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]); __m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; uint64_t idx2 = h2[0] ^h2[4]; uint64_t idx3 = h3[0] ^h3[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; __m128i cx2; __m128i cx3; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2)); cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3)); } else { # ifndef XMRIG_ARMv7 cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]); cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]); cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]); cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2); cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); _mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2)); _mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3)); static const uint32_t table = 0x75310; uint8_t tmp = reinterpret_cast(&l0[idx0 & MASK])[11]; uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l1[idx1 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l2[idx2 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l3[idx3 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); idx2 = EXTRACT64(cx2); idx3 = EXTRACT64(cx3); bx0 = cx0; bx1 = cx1; bx2 = cx2; bx3 = cx3; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ah0 ^= tweak1_2_0; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= tweak1_2_0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ah1 ^= tweak1_2_1; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= tweak1_2_1; ah1 ^= ch; al1 ^= cl; idx1 = al1; cl = ((uint64_t*) &l2[idx2 & MASK])[0]; ch = ((uint64_t*) &l2[idx2 & MASK])[1]; lo = __umul128(idx2, cl, &hi); al2 += hi; ah2 += lo; ah2 ^= tweak1_2_2; ((uint64_t*) &l2[idx2 & MASK])[0] = al2; ((uint64_t*) &l2[idx2 & MASK])[1] = ah2; ah2 ^= tweak1_2_2; ah2 ^= ch; al2 ^= cl; idx2 = al2; cl = ((uint64_t*) &l3[idx3 & MASK])[0]; ch = ((uint64_t*) &l3[idx3 & MASK])[1]; lo = __umul128(idx3, cl, &hi); al3 += hi; ah3 += lo; ah3 ^= tweak1_2_3; ((uint64_t*) &l3[idx3 & MASK])[0] = al3; ((uint64_t*) &l3[idx3 & MASK])[1] = ah3; ah3 ^= tweak1_2_3; ah3 ^= ch; al3 ^= cl; idx3 = al3; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); cn_implode_scratchpad((__m128i*) l2, (__m128i*) h2); cn_implode_scratchpad((__m128i*) l3, (__m128i*) h3); keccakf(h0, 24); keccakf(h1, 24); keccakf(h2, 24); keccakf(h3, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast(output) + 64); extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast(output) + 96); } }; template class CryptoNightMultiHash { public: inline static void hash(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200); keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200); keccak((const uint8_t*) input + 4 * size, (int) size, ctx->state[4], 200); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l2 = ctx->memory + 2 * MEM; const uint8_t* l3 = ctx->memory + 3 * MEM; const uint8_t* l4 = ctx->memory + 4 * MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); uint64_t* h2 = reinterpret_cast(ctx->state[2]); uint64_t* h3 = reinterpret_cast(ctx->state[3]); uint64_t* h4 = reinterpret_cast(ctx->state[4]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad((__m128i*) h2, (__m128i*) l2); cn_explode_scratchpad((__m128i*) h3, (__m128i*) l3); cn_explode_scratchpad((__m128i*) h4, (__m128i*) l4); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t al2 = h2[0] ^h2[4]; uint64_t al3 = h3[0] ^h3[4]; uint64_t al4 = h4[0] ^h4[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; uint64_t ah2 = h2[1] ^h2[5]; uint64_t ah3 = h3[1] ^h3[5]; uint64_t ah4 = h4[1] ^h4[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]); __m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]); __m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; uint64_t idx2 = h2[0] ^h2[4]; uint64_t idx3 = h3[0] ^h3[4]; uint64_t idx4 = h4[0] ^h4[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; __m128i cx2; __m128i cx3; __m128i cx4; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2)); cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3)); cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4)); } else { # ifndef XMRIG_ARMv7 cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]); cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]); cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]); cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]); cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2); cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3); cx4 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx4, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah4, al4); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); _mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2)); _mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3)); _mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4)); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); idx2 = EXTRACT64(cx2); idx3 = EXTRACT64(cx3); idx4 = EXTRACT64(cx4); bx0 = cx0; bx1 = cx1; bx2 = cx2; bx3 = cx3; bx4 = cx4; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= ch; al1 ^= cl; idx1 = al1; cl = ((uint64_t*) &l2[idx2 & MASK])[0]; ch = ((uint64_t*) &l2[idx2 & MASK])[1]; lo = __umul128(idx2, cl, &hi); al2 += hi; ah2 += lo; ((uint64_t*) &l2[idx2 & MASK])[0] = al2; ((uint64_t*) &l2[idx2 & MASK])[1] = ah2; ah2 ^= ch; al2 ^= cl; idx2 = al2; cl = ((uint64_t*) &l3[idx3 & MASK])[0]; ch = ((uint64_t*) &l3[idx3 & MASK])[1]; lo = __umul128(idx3, cl, &hi); al3 += hi; ah3 += lo; ((uint64_t*) &l3[idx3 & MASK])[0] = al3; ((uint64_t*) &l3[idx3 & MASK])[1] = ah3; ah3 ^= ch; al3 ^= cl; idx3 = al3; cl = ((uint64_t*) &l4[idx4 & MASK])[0]; ch = ((uint64_t*) &l4[idx4 & MASK])[1]; lo = __umul128(idx4, cl, &hi); al4 += hi; ah4 += lo; ((uint64_t*) &l4[idx4 & MASK])[0] = al4; ((uint64_t*) &l4[idx4 & MASK])[1] = ah4; ah4 ^= ch; al4 ^= cl; idx4 = al4; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); cn_implode_scratchpad((__m128i*) l2, (__m128i*) h2); cn_implode_scratchpad((__m128i*) l3, (__m128i*) h3); cn_implode_scratchpad((__m128i*) l4, (__m128i*) h4); keccakf(h0, 24); keccakf(h1, 24); keccakf(h2, 24); keccakf(h3, 24); keccakf(h4, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast(output) + 64); extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast(output) + 96); extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, static_cast(output) + 128); } inline static void hashPowV2(const void* __restrict__ input, size_t size, void* __restrict__ output, cryptonight_ctx* __restrict__ ctx) { keccak((const uint8_t*) input, (int) size, ctx->state[0], 200); keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200); keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200); keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200); keccak((const uint8_t*) input + 4 * size, (int) size, ctx->state[4], 200); uint64_t tweak1_2_0 = (*reinterpret_cast(reinterpret_cast(input) + 35) ^ *(reinterpret_cast(ctx->state[0]) + 24)); uint64_t tweak1_2_1 = (*reinterpret_cast(reinterpret_cast(input) + 35 + size) ^ *(reinterpret_cast(ctx->state[1]) + 24)); uint64_t tweak1_2_2 = (*reinterpret_cast(reinterpret_cast(input) + 35 + 2 * size) ^ *(reinterpret_cast(ctx->state[2]) + 24)); uint64_t tweak1_2_3 = (*reinterpret_cast(reinterpret_cast(input) + 35 + 3 * size) ^ *(reinterpret_cast(ctx->state[3]) + 24)); uint64_t tweak1_2_4 = (*reinterpret_cast(reinterpret_cast(input) + 35 + 4 * size) ^ *(reinterpret_cast(ctx->state[4]) + 24)); const uint8_t* l0 = ctx->memory; const uint8_t* l1 = ctx->memory + MEM; const uint8_t* l2 = ctx->memory + 2 * MEM; const uint8_t* l3 = ctx->memory + 3 * MEM; const uint8_t* l4 = ctx->memory + 4 * MEM; uint64_t* h0 = reinterpret_cast(ctx->state[0]); uint64_t* h1 = reinterpret_cast(ctx->state[1]); uint64_t* h2 = reinterpret_cast(ctx->state[2]); uint64_t* h3 = reinterpret_cast(ctx->state[3]); uint64_t* h4 = reinterpret_cast(ctx->state[4]); cn_explode_scratchpad((__m128i*) h0, (__m128i*) l0); cn_explode_scratchpad((__m128i*) h1, (__m128i*) l1); cn_explode_scratchpad((__m128i*) h2, (__m128i*) l2); cn_explode_scratchpad((__m128i*) h3, (__m128i*) l3); cn_explode_scratchpad((__m128i*) h4, (__m128i*) l4); uint64_t al0 = h0[0] ^h0[4]; uint64_t al1 = h1[0] ^h1[4]; uint64_t al2 = h2[0] ^h2[4]; uint64_t al3 = h3[0] ^h3[4]; uint64_t al4 = h4[0] ^h4[4]; uint64_t ah0 = h0[1] ^h0[5]; uint64_t ah1 = h1[1] ^h1[5]; uint64_t ah2 = h2[1] ^h2[5]; uint64_t ah3 = h3[1] ^h3[5]; uint64_t ah4 = h4[1] ^h4[5]; __m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]); __m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]); __m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]); uint64_t idx0 = h0[0] ^h0[4]; uint64_t idx1 = h1[0] ^h1[4]; uint64_t idx2 = h2[0] ^h2[4]; uint64_t idx3 = h3[0] ^h3[4]; uint64_t idx4 = h4[0] ^h4[4]; for (size_t i = 0; i < ITERATIONS; i++) { __m128i cx0; __m128i cx1; __m128i cx2; __m128i cx3; __m128i cx4; if (SOFT_AES) { cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0)); cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1)); cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2)); cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3)); cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4)); } else { # ifndef XMRIG_ARMv7 cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]); cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]); cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]); cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]); cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]); cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0); cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1); cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2); cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3); cx4 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx4, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah4, al4); # endif } _mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0)); _mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1)); _mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2)); _mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3)); _mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4)); static const uint32_t table = 0x75310; uint8_t tmp = reinterpret_cast(&l0[idx0 & MASK])[11]; uint8_t index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l1[idx1 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l2[idx2 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l3[idx3 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); tmp = reinterpret_cast(&l4[idx4 & MASK])[11]; index = (((tmp >> 3) & 6) | (tmp & 1)) << 1; ((uint8_t*)(&l4[idx4 & MASK]))[11] = tmp ^ ((table >> index) & 0x30); idx0 = EXTRACT64(cx0); idx1 = EXTRACT64(cx1); idx2 = EXTRACT64(cx2); idx3 = EXTRACT64(cx3); idx4 = EXTRACT64(cx4); bx0 = cx0; bx1 = cx1; bx2 = cx2; bx3 = cx3; bx4 = cx4; uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; lo = __umul128(idx0, cl, &hi); al0 += hi; ah0 += lo; ah0 ^= tweak1_2_0; ((uint64_t*) &l0[idx0 & MASK])[0] = al0; ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; ah0 ^= tweak1_2_0; ah0 ^= ch; al0 ^= cl; idx0 = al0; cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; lo = __umul128(idx1, cl, &hi); al1 += hi; ah1 += lo; ah1 ^= tweak1_2_1; ((uint64_t*) &l1[idx1 & MASK])[0] = al1; ((uint64_t*) &l1[idx1 & MASK])[1] = ah1; ah1 ^= tweak1_2_1; ah1 ^= ch; al1 ^= cl; idx1 = al1; cl = ((uint64_t*) &l2[idx2 & MASK])[0]; ch = ((uint64_t*) &l2[idx2 & MASK])[1]; lo = __umul128(idx2, cl, &hi); al2 += hi; ah2 += lo; ah2 ^= tweak1_2_2; ((uint64_t*) &l2[idx2 & MASK])[0] = al2; ((uint64_t*) &l2[idx2 & MASK])[1] = ah2; ah2 ^= tweak1_2_2; ah2 ^= ch; al2 ^= cl; idx2 = al2; cl = ((uint64_t*) &l3[idx3 & MASK])[0]; ch = ((uint64_t*) &l3[idx3 & MASK])[1]; lo = __umul128(idx3, cl, &hi); al3 += hi; ah3 += lo; ah3 ^= tweak1_2_3; ((uint64_t*) &l3[idx3 & MASK])[0] = al3; ((uint64_t*) &l3[idx3 & MASK])[1] = ah3; ah3 ^= tweak1_2_3; ah3 ^= ch; al3 ^= cl; idx3 = al3; cl = ((uint64_t*) &l4[idx4 & MASK])[0]; ch = ((uint64_t*) &l4[idx4 & MASK])[1]; lo = __umul128(idx4, cl, &hi); al4 += hi; ah4 += lo; ah4 ^= tweak1_2_4; ((uint64_t*) &l4[idx4 & MASK])[0] = al4; ((uint64_t*) &l4[idx4 & MASK])[1] = ah4; ah4 ^= tweak1_2_4; ah4 ^= ch; al4 ^= cl; idx4 = al4; } cn_implode_scratchpad((__m128i*) l0, (__m128i*) h0); cn_implode_scratchpad((__m128i*) l1, (__m128i*) h1); cn_implode_scratchpad((__m128i*) l2, (__m128i*) h2); cn_implode_scratchpad((__m128i*) l3, (__m128i*) h3); cn_implode_scratchpad((__m128i*) l4, (__m128i*) h4); keccakf(h0, 24); keccakf(h1, 24); keccakf(h2, 24); keccakf(h3, 24); keccakf(h4, 24); extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast(output)); extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast(output) + 32); extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast(output) + 64); extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast(output) + 96); extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, static_cast(output) + 128); } }; #endif /* __CRYPTONIGHT_ARM_H__ */