/* XMRig * Copyright (c) 2012-2013 The Cryptonote developers * Copyright (c) 2014-2021 The Monero Project * Copyright (c) 2018-2022 SChernykh * Copyright (c) 2016-2022 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include "base/crypto/keccak.h" #include "base/tools/cryptonote/Signatures.h" #include "base/tools/Cvt.h" extern "C" { #ifdef XMRIG_LEGACY # include "base/tools/cryptonote/crypto-ops.h" #else # include "3rdparty/cryptonote/crypto-ops.h" #endif } #if defined(XMRIG_PROXY_PROJECT) || !defined(XMRIG_PROFILER_H) # define PROFILE_SCOPE(x) #else # include "crypto/rx/Profiler.h" #endif namespace xmrig { struct ec_scalar { uint8_t data[32]; }; struct hash { uint8_t data[32]; }; struct ec_point { uint8_t data[32]; }; struct signature { ec_scalar c, r; }; struct s_comm { hash h; ec_point key; ec_point comm; }; static inline void random_scalar(ec_scalar &res) { // Don't care about bias or possible 0 after reduce: probability ~10^-76, not happening in this universe. // Performance matters more. It's a miner after all. Cvt::randomBytes(res.data, sizeof(res.data)); sc_reduce32(res.data); } static void hash_to_scalar(const void* data, size_t length, ec_scalar &res) { keccak(reinterpret_cast(data), length, res.data, sizeof(res)); sc_reduce32(res.data); } static void derivation_to_scalar(const uint8_t *derivation, size_t output_index, ec_scalar &res) { struct { uint8_t derivation[32]; uint8_t output_index[(sizeof(size_t) * 8 + 6) / 7]; } buf; uint8_t* end = buf.output_index; memcpy(buf.derivation, derivation, sizeof(buf.derivation)); size_t k = output_index; while (k >= 0x80) { *(end++) = (static_cast(k) & 0x7F) | 0x80; k >>= 7; } *(end++) = static_cast(k); hash_to_scalar(&buf, end - reinterpret_cast(&buf), res); } } // namespace xmrig // NOLINTNEXTLINE(readability-non-const-parameter) void xmrig::generate_signature(const uint8_t *prefix_hash, const uint8_t *pub, const uint8_t *sec, uint8_t *sig_bytes) { PROFILE_SCOPE(GenerateSignature); ge_p3 tmp3; ec_scalar k; s_comm buf; memcpy(buf.h.data, prefix_hash, sizeof(buf.h.data)); memcpy(buf.key.data, pub, sizeof(buf.key.data)); signature &sig = *reinterpret_cast(sig_bytes); do { random_scalar(k); ge_scalarmult_base(&tmp3, k.data); ge_p3_tobytes(buf.comm.data, &tmp3); hash_to_scalar(&buf, sizeof(s_comm), sig.c); if (!sc_isnonzero(sig.c.data)) { continue; } sc_mulsub(sig.r.data, sig.c.data, sec, k.data); } while (!sc_isnonzero(sig.r.data)); } bool xmrig::check_signature(const uint8_t *prefix_hash, const uint8_t *pub, const uint8_t *sig_bytes) { ge_p2 tmp2; ge_p3 tmp3; ec_scalar c; s_comm buf; memcpy(buf.h.data, prefix_hash, sizeof(buf.h.data)); memcpy(buf.key.data, pub, sizeof(buf.key.data)); if (ge_frombytes_vartime(&tmp3, pub) != 0) { return false; } const signature &sig = *reinterpret_cast(sig_bytes); if (sc_check(sig.c.data) != 0 || sc_check(sig.r.data) != 0 || !sc_isnonzero(sig.c.data)) { return false; } ge_double_scalarmult_base_vartime(&tmp2, sig.c.data, &tmp3, sig.r.data); ge_tobytes(buf.comm.data, &tmp2); static const ec_point infinity = { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} }; if (memcmp(&buf.comm, &infinity, 32) == 0) { return false; } hash_to_scalar(&buf, sizeof(s_comm), c); sc_sub(c.data, c.data, sig.c.data); return sc_isnonzero(c.data) == 0; } bool xmrig::generate_key_derivation(const uint8_t *key1, const uint8_t *key2, uint8_t *derivation) { ge_p3 point; ge_p2 point2; ge_p1p1 point3; if (ge_frombytes_vartime(&point, key1) != 0) { return false; } ge_scalarmult(&point2, key2, &point); ge_mul8(&point3, &point2); ge_p1p1_to_p2(&point2, &point3); ge_tobytes(derivation, &point2); return true; } void xmrig::derive_secret_key(const uint8_t *derivation, size_t output_index, const uint8_t *base, uint8_t *derived_key) { ec_scalar scalar; derivation_to_scalar(derivation, output_index, scalar); sc_add(derived_key, base, scalar.data); } bool xmrig::derive_public_key(const uint8_t *derivation, size_t output_index, const uint8_t *base, uint8_t *derived_key) { ec_scalar scalar; ge_p3 point1; ge_p3 point2; ge_cached point3; ge_p1p1 point4; ge_p2 point5; if (ge_frombytes_vartime(&point1, base) != 0) { return false; } derivation_to_scalar(derivation, output_index, scalar); ge_scalarmult_base(&point2, scalar.data); ge_p3_to_cached(&point3, &point2); ge_add(&point4, &point1, &point3); ge_p1p1_to_p2(&point5, &point4); ge_tobytes(derived_key, &point5); return true; } void xmrig::derive_view_secret_key(const uint8_t *spend_secret_key, uint8_t *view_secret_key) { keccak(spend_secret_key, 32, view_secret_key, 32); sc_reduce32(view_secret_key); } void xmrig::generate_keys(uint8_t *pub, uint8_t *sec) { random_scalar(*((ec_scalar*)sec)); ge_p3 point; ge_scalarmult_base(&point, sec); ge_p3_tobytes(pub, &point); } bool xmrig::secret_key_to_public_key(const uint8_t *sec, uint8_t *pub) { if (sc_check(sec) != 0) { return false; } ge_p3 point; ge_scalarmult_base(&point, sec); ge_p3_tobytes(pub, &point); return true; }