/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2018 XMR-Stak , * Copyright 2018-2019 SChernykh * Copyright 2016-2019 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include "backend/cuda/CudaBackend.h" #include "backend/common/Hashrate.h" #include "backend/common/interfaces/IWorker.h" #include "backend/common/Tags.h" #include "backend/common/Workers.h" #include "backend/cuda/CudaConfig.h" #include "backend/cuda/CudaThreads.h" #include "backend/cuda/CudaWorker.h" #include "backend/cuda/wrappers/CudaDevice.h" #include "backend/cuda/wrappers/CudaLib.h" #include "base/io/log/Log.h" #include "base/net/stratum/Job.h" #include "base/tools/Chrono.h" #include "base/tools/String.h" #include "core/config/Config.h" #include "core/Controller.h" #include "rapidjson/document.h" #ifdef XMRIG_FEATURE_API # include "base/api/interfaces/IApiRequest.h" #endif namespace xmrig { extern template class Threads; constexpr const size_t oneMiB = 1024u * 1024u; static const char *tag = GREEN_BG_BOLD(WHITE_BOLD_S " nv "); static const String kType = "cuda"; static std::mutex mutex; static void printDisabled(const char *reason) { Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") RED_BOLD("disabled") "%s", "CUDA", reason); } struct CudaLaunchStatus { public: inline size_t threads() const { return m_threads; } inline bool started(bool ready) { ready ? m_started++ : m_errors++; return (m_started + m_errors) == m_threads; } inline void start(size_t threads) { m_started = 0; m_errors = 0; m_threads = threads; m_ts = Chrono::steadyMSecs(); CudaWorker::ready = false; } inline void print() const { if (m_started == 0) { LOG_ERR("%s " RED_BOLD("disabled") YELLOW(" (failed to start threads)"), tag); return; } LOG_INFO("%s" GREEN_BOLD(" READY") " threads " "%s%zu/%zu" BLACK_BOLD(" (%" PRIu64 " ms)"), tag, m_errors == 0 ? CYAN_BOLD_S : YELLOW_BOLD_S, m_started, m_threads, Chrono::steadyMSecs() - m_ts ); } private: size_t m_errors = 0; size_t m_started = 0; size_t m_threads = 0; uint64_t m_ts = 0; }; class CudaBackendPrivate { public: inline CudaBackendPrivate(Controller *controller) : controller(controller) { init(controller->config()->cuda()); } void init(const CudaConfig &cuda) { if (!cuda.isEnabled()) { return printDisabled(""); } if (!CudaLib::init(cuda.loader())) { return printDisabled(RED_S " (failed to load CUDA plugin)"); } const uint32_t runtimeVersion = CudaLib::runtimeVersion(); const uint32_t driverVersion = CudaLib::driverVersion(); if (!runtimeVersion || !driverVersion || !CudaLib::deviceCount()) { return printDisabled(RED_S " (no devices)"); } if (!devices.empty()) { return; } Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") WHITE_BOLD("%u.%u") "/" WHITE_BOLD("%u.%u") BLACK_BOLD("/%s"), "CUDA", runtimeVersion / 1000, runtimeVersion % 100, driverVersion / 1000, driverVersion % 100, CudaLib::pluginVersion()); devices = CudaLib::devices(cuda.bfactor(), cuda.bsleep()); for (const CudaDevice &device : devices) { Log::print(GREEN_BOLD(" * ") WHITE_BOLD("%-13s") CYAN_BOLD("#%zu") YELLOW(" %s") GREEN_BOLD(" %s ") WHITE_BOLD("%u/%u MHz") " smx:" WHITE_BOLD("%u") " arch:" WHITE_BOLD("%u%u") " mem:" CYAN("%zu/%zu") " MB", "CUDA GPU", device.index(), device.topology().toString().data(), device.name().data(), device.clock(), device.memoryClock(), device.smx(), device.computeCapability(true), device.computeCapability(false), device.freeMemSize() / oneMiB, device.globalMemSize() / oneMiB); } } inline void start(const Job &) { LOG_INFO("%s use profile " BLUE_BG(WHITE_BOLD_S " %s ") WHITE_BOLD_S " (" CYAN_BOLD("%zu") WHITE_BOLD(" threads)") " scratchpad " CYAN_BOLD("%zu KB"), tag, profileName.data(), threads.size(), algo.l3() / 1024 ); Log::print(WHITE_BOLD("| # | GPU | BUS ID | I | T | B | BF | BS | MEM | NAME")); size_t i = 0; for (const auto &data : threads) { Log::print("|" CYAN_BOLD("%3zu") " |" CYAN_BOLD("%4u") " |" YELLOW(" %7s") " |" CYAN_BOLD("%5d") " |" CYAN_BOLD("%4d") " |" CYAN_BOLD("%4d") " |" CYAN_BOLD("%3d") " |" CYAN_BOLD("%4d") " |" CYAN("%5zu") " | " GREEN("%s"), i, data.thread.index(), data.device.topology().toString().data(), data.thread.threads() * data.thread.blocks(), data.thread.threads(), data.thread.blocks(), data.thread.bfactor(), data.thread.bsleep(), (data.thread.threads() * data.thread.blocks()) * algo.l3() / oneMiB, data.device.name().data() ); i++; } status.start(threads.size()); workers.start(threads); } Algorithm algo; Controller *controller; CudaLaunchStatus status; std::vector devices; std::vector threads; String profileName; Workers workers; }; } // namespace xmrig const char *xmrig::cuda_tag() { return tag; } xmrig::CudaBackend::CudaBackend(Controller *controller) : d_ptr(new CudaBackendPrivate(controller)) { d_ptr->workers.setBackend(this); } xmrig::CudaBackend::~CudaBackend() { delete d_ptr; CudaLib::close(); } bool xmrig::CudaBackend::isEnabled() const { return d_ptr->controller->config()->cuda().isEnabled() && CudaLib::isInitialized() && !d_ptr->devices.empty();; } bool xmrig::CudaBackend::isEnabled(const Algorithm &algorithm) const { return !d_ptr->controller->config()->cuda().threads().get(algorithm).isEmpty(); } const xmrig::Hashrate *xmrig::CudaBackend::hashrate() const { return d_ptr->workers.hashrate(); } const xmrig::String &xmrig::CudaBackend::profileName() const { return d_ptr->profileName; } const xmrig::String &xmrig::CudaBackend::type() const { return kType; } void xmrig::CudaBackend::prepare(const Job &) { } void xmrig::CudaBackend::printHashrate(bool details) { if (!details || !hashrate()) { return; } char num[8 * 3] = { 0 }; Log::print(WHITE_BOLD_S "| CUDA # | AFFINITY | 10s H/s | 60s H/s | 15m H/s |"); size_t i = 0; for (const auto &data : d_ptr->threads) { Log::print("| %8zu | %8" PRId64 " | %7s | %7s | %7s |" CYAN_BOLD(" #%u") YELLOW(" %s") GREEN(" %s"), i, data.thread.affinity(), Hashrate::format(hashrate()->calc(i, Hashrate::ShortInterval), num, sizeof num / 3), Hashrate::format(hashrate()->calc(i, Hashrate::MediumInterval), num + 8, sizeof num / 3), Hashrate::format(hashrate()->calc(i, Hashrate::LargeInterval), num + 8 * 2, sizeof num / 3), data.device.index(), data.device.topology().toString().data(), data.device.name().data() ); i++; } Log::print(WHITE_BOLD_S "| - | - | %7s | %7s | %7s |", Hashrate::format(hashrate()->calc(Hashrate::ShortInterval), num, sizeof num / 3), Hashrate::format(hashrate()->calc(Hashrate::MediumInterval), num + 8, sizeof num / 3), Hashrate::format(hashrate()->calc(Hashrate::LargeInterval), num + 8 * 2, sizeof num / 3) ); } void xmrig::CudaBackend::setJob(const Job &job) { const auto &cuda = d_ptr->controller->config()->cuda(); if (cuda.isEnabled()) { d_ptr->init(cuda); } if (!isEnabled()) { return stop(); } auto threads = cuda.get(d_ptr->controller->miner(), job.algorithm(), d_ptr->devices); if (!d_ptr->threads.empty() && d_ptr->threads.size() == threads.size() && std::equal(d_ptr->threads.begin(), d_ptr->threads.end(), threads.begin())) { return; } d_ptr->algo = job.algorithm(); d_ptr->profileName = cuda.threads().profileName(job.algorithm()); if (d_ptr->profileName.isNull() || threads.empty()) { LOG_WARN("%s " RED_BOLD("disabled") YELLOW(" (no suitable configuration found)"), tag); return stop(); } stop(); d_ptr->threads = std::move(threads); d_ptr->start(job); } void xmrig::CudaBackend::start(IWorker *worker, bool ready) { mutex.lock(); if (d_ptr->status.started(ready)) { d_ptr->status.print(); CudaWorker::ready = true; } mutex.unlock(); if (ready) { worker->start(); } } void xmrig::CudaBackend::stop() { if (d_ptr->threads.empty()) { return; } const uint64_t ts = Chrono::steadyMSecs(); d_ptr->workers.stop(); d_ptr->threads.clear(); LOG_INFO("%s" YELLOW(" stopped") BLACK_BOLD(" (%" PRIu64 " ms)"), tag, Chrono::steadyMSecs() - ts); } void xmrig::CudaBackend::tick(uint64_t ticks) { d_ptr->workers.tick(ticks); } #ifdef XMRIG_FEATURE_API rapidjson::Value xmrig::CudaBackend::toJSON(rapidjson::Document &doc) const { using namespace rapidjson; auto &allocator = doc.GetAllocator(); Value out(kObjectType); out.AddMember("type", type().toJSON(), allocator); out.AddMember("enabled", isEnabled(), allocator); out.AddMember("algo", d_ptr->algo.toJSON(), allocator); out.AddMember("profile", profileName().toJSON(), allocator); if (d_ptr->threads.empty() || !hashrate()) { return out; } out.AddMember("hashrate", hashrate()->toJSON(doc), allocator); Value threads(kArrayType); size_t i = 0; for (const auto &data : d_ptr->threads) { Value thread = data.thread.toJSON(doc); thread.AddMember("hashrate", hashrate()->toJSON(i, doc), allocator); data.device.toJSON(thread, doc); i++; threads.PushBack(thread, allocator); } out.AddMember("threads", threads, allocator); return out; } void xmrig::CudaBackend::handleRequest(IApiRequest &) { } #endif