/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2019 XMR-Stak , * Copyright 2018-2019 SChernykh * Copyright 2016-2019 XMRig * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifdef XMRIG_HWLOC_DEBUG # include #endif #include #include #if HWLOC_API_VERSION < 0x00010b00 # define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET # define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE #endif #include "backend/cpu/platform/HwlocCpuInfo.h" #include "base/io/log/Log.h" namespace xmrig { std::vector HwlocCpuInfo::m_nodeIndexes; uint32_t HwlocCpuInfo::m_features = 0; static inline bool isCacheObject(hwloc_obj_t obj) { # if HWLOC_API_VERSION >= 0x20000 return hwloc_obj_type_is_cache(obj->type); # else return obj->type == HWLOC_OBJ_CACHE; # endif } template static inline void findCache(hwloc_obj_t obj, unsigned min, unsigned max, func lambda) { for (size_t i = 0; i < obj->arity; i++) { if (isCacheObject(obj->children[i])) { const unsigned depth = obj->children[i]->attr->cache.depth; if (depth < min || depth > max) { continue; } lambda(obj->children[i]); } findCache(obj->children[i], min, max, lambda); } } template static inline void findByType(hwloc_obj_t obj, hwloc_obj_type_t type, func lambda) { for (size_t i = 0; i < obj->arity; i++) { if (obj->children[i]->type == type) { lambda(obj->children[i]); } else { findByType(obj->children[i], type, lambda); } } } static inline std::vector findByType(hwloc_obj_t obj, hwloc_obj_type_t type) { std::vector out; findByType(obj, type, [&out](hwloc_obj_t found) { out.emplace_back(found); }); return out; } static inline size_t countByType(hwloc_topology_t topology, hwloc_obj_type_t type) { const int count = hwloc_get_nbobjs_by_type(topology, type); return count > 0 ? static_cast(count) : 0; } static inline size_t countByType(hwloc_obj_t obj, hwloc_obj_type_t type) { size_t count = 0; findByType(obj, type, [&count](hwloc_obj_t) { count++; }); return count; } static inline bool isCacheExclusive(hwloc_obj_t obj) { const char *value = hwloc_obj_get_info_by_name(obj, "Inclusive"); return value == nullptr || value[0] != '1'; } } // namespace xmrig xmrig::HwlocCpuInfo::HwlocCpuInfo() : BasicCpuInfo(), m_backend(), m_cache() { m_threads = 0; hwloc_topology_init(&m_topology); hwloc_topology_load(m_topology); # ifdef XMRIG_HWLOC_DEBUG # if defined(UV_VERSION_HEX) && UV_VERSION_HEX >= 0x010c00 { char env[520] = { 0 }; size_t size = sizeof(env); if (uv_os_getenv("HWLOC_XMLFILE", env, &size) == 0) { printf("use HWLOC XML file: \"%s\"\n", env); } } # endif const std::vector packages = findByType(hwloc_get_root_obj(m_topology), HWLOC_OBJ_PACKAGE); if (packages.size()) { const char *value = hwloc_obj_get_info_by_name(packages[0], "CPUModel"); if (value) { strncpy(m_brand, value, 64); } } # endif hwloc_obj_t root = hwloc_get_root_obj(m_topology); # if HWLOC_API_VERSION >= 0x00010b00 const char *version = hwloc_obj_get_info_by_name(root, "hwlocVersion"); if (version) { snprintf(m_backend, sizeof m_backend, "hwloc/%s", version); } else # endif { snprintf(m_backend, sizeof m_backend, "hwloc/%d.%d.%d", (HWLOC_API_VERSION>>16)&0x000000ff, (HWLOC_API_VERSION>>8 )&0x000000ff, (HWLOC_API_VERSION )&0x000000ff ); } findCache(root, 2, 3, [this](hwloc_obj_t found) { this->m_cache[found->attr->cache.depth] += found->attr->cache.size; }); m_threads = countByType(m_topology, HWLOC_OBJ_PU); m_cores = countByType(m_topology, HWLOC_OBJ_CORE); m_nodes = std::max(countByType(m_topology, HWLOC_OBJ_NUMANODE), 1); m_packages = countByType(m_topology, HWLOC_OBJ_PACKAGE); if (m_nodes > 1) { if (hwloc_topology_get_support(m_topology)->membind->set_thisthread_membind) { m_features |= SET_THISTHREAD_MEMBIND; } m_nodeIndexes.reserve(m_nodes); hwloc_obj_t node = nullptr; while ((node = hwloc_get_next_obj_by_type(m_topology, HWLOC_OBJ_NUMANODE, node)) != nullptr) { m_nodeIndexes.emplace_back(node->os_index); } } } xmrig::HwlocCpuInfo::~HwlocCpuInfo() { hwloc_topology_destroy(m_topology); } xmrig::CpuThreads xmrig::HwlocCpuInfo::threads(const Algorithm &algorithm) const { if (L2() == 0 && L3() == 0) { return BasicCpuInfo::threads(algorithm); } const unsigned depth = L3() > 0 ? 3 : 2; CpuThreads threads; threads.reserve(m_threads); std::vector caches; caches.reserve(16); findCache(hwloc_get_root_obj(m_topology), depth, depth, [&caches](hwloc_obj_t found) { caches.emplace_back(found); }); for (hwloc_obj_t cache : caches) { processTopLevelCache(cache, algorithm, threads); } if (threads.isEmpty()) { LOG_WARN("hwloc auto configuration for algorithm \"%s\" failed.", algorithm.shortName()); return BasicCpuInfo::threads(algorithm); } return threads; } void xmrig::HwlocCpuInfo::processTopLevelCache(hwloc_obj_t cache, const Algorithm &algorithm, CpuThreads &threads) const { constexpr size_t oneMiB = 1024u * 1024u; size_t PUs = countByType(cache, HWLOC_OBJ_PU); if (PUs == 0) { return; } std::vector cores; cores.reserve(m_cores); findByType(cache, HWLOC_OBJ_CORE, [&cores](hwloc_obj_t found) { cores.emplace_back(found); }); size_t L3 = cache->attr->cache.size; size_t L2 = 0; int L2_associativity = 0; size_t extra = 0; const size_t scratchpad = algorithm.l3(); int intensity = algorithm.maxIntensity() == 1 ? -1 : 1; if (cache->attr->cache.depth == 3 && isCacheExclusive(cache)) { for (size_t i = 0; i < cache->arity; ++i) { hwloc_obj_t l2 = cache->children[i]; if (!isCacheObject(l2) || l2->attr == nullptr) { continue; } L2 += l2->attr->cache.size; L2_associativity = l2->attr->cache.associativity; if (l2->attr->cache.size >= scratchpad) { extra += scratchpad; } } } if (scratchpad == 2 * oneMiB) { if (L2 && (cores.size() * oneMiB) == L2 && L2_associativity == 16 && L3 >= L2) { L3 = L2; extra = L2; } } size_t cacheHashes = ((L3 + extra) + (scratchpad / 2)) / scratchpad; # ifdef XMRIG_ALGO_CN_PICO if (algorithm == Algorithm::CN_PICO_0 && (cacheHashes / PUs) >= 2) { intensity = 2; } # endif # ifdef XMRIG_ALGO_CN_GPU if (algorithm == Algorithm::CN_GPU) { cacheHashes = PUs; } # endif # ifdef XMRIG_ALGO_RANDOMX if (extra == 0 && algorithm.l2() > 0) { cacheHashes = std::min(std::max(L2 / algorithm.l2(), cores.size()), cacheHashes); } # endif if (cacheHashes >= PUs) { for (hwloc_obj_t core : cores) { const std::vector units = findByType(core, HWLOC_OBJ_PU); for (hwloc_obj_t pu : units) { threads.add(pu->os_index, intensity); } } return; } size_t pu_id = 0; while (cacheHashes > 0 && PUs > 0) { bool allocated_pu = false; for (hwloc_obj_t core : cores) { const std::vector units = findByType(core, HWLOC_OBJ_PU); if (units.size() <= pu_id) { continue; } cacheHashes--; PUs--; allocated_pu = true; threads.add(units[pu_id]->os_index, intensity); if (cacheHashes == 0) { break; } } if (!allocated_pu) { break; } pu_id++; } }