/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2011 Markku-Juhani O. Saarinen * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2018 XMR-Stak , * Copyright 2018-2020 SChernykh * Copyright 2016-2020 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include "base/crypto/keccak.h" #define HASH_DATA_AREA 136 #define KECCAK_ROUNDS 24 #ifndef ROTL64 #define ROTL64(x, y) (((x) << (y)) | ((x) >> (64 - (y)))) #endif const uint64_t keccakf_rndc[24] = { 0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000, 0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009, 0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a, 0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003, 0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a, 0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008 }; // update the state with given number of rounds void xmrig::keccakf(uint64_t st[25], int rounds) { for (int round = 0; round < rounds; ++round) { uint64_t bc[5]; // Theta bc[0] = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20]; bc[1] = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21]; bc[2] = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22]; bc[3] = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23]; bc[4] = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24]; #define X(i) { \ const uint64_t t = bc[(i + 4) % 5] ^ ROTL64(bc[(i + 1) % 5], 1); \ st[i ] ^= t; \ st[i + 5] ^= t; \ st[i + 10] ^= t; \ st[i + 15] ^= t; \ st[i + 20] ^= t; \ } X(0); X(1); X(2); X(3); X(4); #undef X // Rho Pi const uint64_t t = st[1]; st[ 1] = ROTL64(st[ 6], 44); st[ 6] = ROTL64(st[ 9], 20); st[ 9] = ROTL64(st[22], 61); st[22] = ROTL64(st[14], 39); st[14] = ROTL64(st[20], 18); st[20] = ROTL64(st[ 2], 62); st[ 2] = ROTL64(st[12], 43); st[12] = ROTL64(st[13], 25); st[13] = ROTL64(st[19], 8); st[19] = ROTL64(st[23], 56); st[23] = ROTL64(st[15], 41); st[15] = ROTL64(st[ 4], 27); st[ 4] = ROTL64(st[24], 14); st[24] = ROTL64(st[21], 2); st[21] = ROTL64(st[ 8], 55); st[ 8] = ROTL64(st[16], 45); st[16] = ROTL64(st[ 5], 36); st[ 5] = ROTL64(st[ 3], 28); st[ 3] = ROTL64(st[18], 21); st[18] = ROTL64(st[17], 15); st[17] = ROTL64(st[11], 10); st[11] = ROTL64(st[ 7], 6); st[ 7] = ROTL64(st[10], 3); st[10] = ROTL64(t, 1); // Chi // unrolled loop, where only last iteration is different int j = 0; bc[0] = st[j ]; bc[1] = st[j + 1]; st[j ] ^= (~st[j + 1]) & st[j + 2]; st[j + 1] ^= (~st[j + 2]) & st[j + 3]; st[j + 2] ^= (~st[j + 3]) & st[j + 4]; st[j + 3] ^= (~st[j + 4]) & bc[0]; st[j + 4] ^= (~bc[0]) & bc[1]; j = 5; bc[0] = st[j ]; bc[1] = st[j + 1]; st[j ] ^= (~st[j + 1]) & st[j + 2]; st[j + 1] ^= (~st[j + 2]) & st[j + 3]; st[j + 2] ^= (~st[j + 3]) & st[j + 4]; st[j + 3] ^= (~st[j + 4]) & bc[0]; st[j + 4] ^= (~bc[0]) & bc[1]; j = 10; bc[0] = st[j ]; bc[1] = st[j + 1]; st[j ] ^= (~st[j + 1]) & st[j + 2]; st[j + 1] ^= (~st[j + 2]) & st[j + 3]; st[j + 2] ^= (~st[j + 3]) & st[j + 4]; st[j + 3] ^= (~st[j + 4]) & bc[0]; st[j + 4] ^= (~bc[0]) & bc[1]; j = 15; bc[0] = st[j ]; bc[1] = st[j + 1]; st[j ] ^= (~st[j + 1]) & st[j + 2]; st[j + 1] ^= (~st[j + 2]) & st[j + 3]; st[j + 2] ^= (~st[j + 3]) & st[j + 4]; st[j + 3] ^= (~st[j + 4]) & bc[0]; st[j + 4] ^= (~bc[0]) & bc[1]; j = 20; bc[0] = st[j ]; bc[1] = st[j + 1]; bc[2] = st[j + 2]; bc[3] = st[j + 3]; bc[4] = st[j + 4]; st[j ] ^= (~bc[1]) & bc[2]; st[j + 1] ^= (~bc[2]) & bc[3]; st[j + 2] ^= (~bc[3]) & bc[4]; st[j + 3] ^= (~bc[4]) & bc[0]; st[j + 4] ^= (~bc[0]) & bc[1]; // Iota st[0] ^= keccakf_rndc[round]; } } // compute a keccak hash (md) of given byte length from "in" typedef uint64_t state_t[25]; void xmrig::keccak(const uint8_t *in, int inlen, uint8_t *md, int mdlen) { state_t st; alignas(8) uint8_t temp[144]; int i, rsiz, rsizw; rsiz = sizeof(state_t) == mdlen ? HASH_DATA_AREA : 200 - 2 * mdlen; rsizw = rsiz / 8; memset(st, 0, sizeof(st)); for ( ; inlen >= rsiz; inlen -= rsiz, in += rsiz) { for (i = 0; i < rsizw; i++) { st[i] ^= ((uint64_t *) in)[i]; } xmrig::keccakf(st, KECCAK_ROUNDS); } // last block and padding memcpy(temp, in, inlen); temp[inlen++] = 1; memset(temp + inlen, 0, rsiz - inlen); temp[rsiz - 1] |= 0x80; for (i = 0; i < rsizw; i++) { st[i] ^= ((uint64_t *) temp)[i]; } keccakf(st, KECCAK_ROUNDS); memcpy(md, st, mdlen); }