/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2018 XMR-Stak , * Copyright 2016-2018 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #include #include #include #include #include "core/cpu/AdvancedCpuInfo.h" xmrig::AdvancedCpuInfo::AdvancedCpuInfo() : m_aes(false), m_L2_exclusive(false), m_brand(), m_cores(0), m_L2(0), m_L3(0), m_sockets(1), m_threads(std::thread::hardware_concurrency()) { struct cpu_raw_data_t raw = { 0 }; struct cpu_id_t data = { 0 }; cpuid_get_raw_data(&raw); cpu_identify(&raw, &data); strncpy(m_brand, data.brand_str, sizeof(m_brand) - 1); m_sockets = threads() / data.num_logical_cpus; if (m_sockets == 0) { m_sockets = 1; } m_cores = data.num_cores * m_sockets; m_L3 = data.l3_cache > 0 ? data.l3_cache * m_sockets : 0; // Workaround for AMD CPUs https://github.com/anrieff/libcpuid/issues/97 if (data.vendor == VENDOR_AMD && data.ext_family >= 0x15 && data.ext_family < 0x17) { m_L2 = data.l2_cache * (cores() / 2) * m_sockets; m_L2_exclusive = true; } // Workaround for Intel Pentium Dual-Core, Core Duo, Core 2 Duo, Core 2 Quad and their Xeon homologue // These processors have L2 cache shared by 2 cores. else if (data.vendor == VENDOR_INTEL && data.ext_family == 0x06 && (data.ext_model == 0x0E || data.ext_model == 0x0F || data.ext_model == 0x17)) { int l2_count_per_socket = cores() > 1 ? cores() / 2 : 1; m_L2 = data.l2_cache > 0 ? data.l2_cache * l2_count_per_socket * m_sockets : 0; } else{ m_L2 = data.l2_cache > 0 ? data.l2_cache * cores() * m_sockets : 0; } m_aes = data.flags[CPU_FEATURE_AES]; } size_t xmrig::AdvancedCpuInfo::optimalThreadsCount(size_t memSize, int maxCpuUsage) const { if (threads() == 1) { return 1; } size_t cache = 0; if (m_L3) { cache = m_L2_exclusive ? (m_L2 + m_L3) : m_L3; } else { cache = m_L2; } size_t count = 0; if (cache) { count = cache / memSize; if (cache % memSize >= memSize / 2) { count++; } } else { count = threads() / 2; } if (count > (size_t) threads()) { count = threads(); } if (((float) count / threads() * 100) > maxCpuUsage) { count = (int) ceil((float) threads() * (maxCpuUsage / 100.0)); } return count < 1 ? 1 : count; }