/* XMRig * Copyright 2010 Jeff Garzik * Copyright 2012-2014 pooler * Copyright 2014 Lucas Jones * Copyright 2014-2016 Wolf9466 * Copyright 2016 Jay D Dee * Copyright 2017-2019 XMR-Stak , * Copyright 2018 Lee Clagett * Copyright 2018-2020 SChernykh * Copyright 2016-2020 XMRig , * * This program is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ #ifndef XMRIG_CRYPTONIGHT_X86_H #define XMRIG_CRYPTONIGHT_X86_H #ifdef __GNUC__ # include #else # include # define __restrict__ __restrict #endif #include "backend/cpu/Cpu.h" #include "base/crypto/keccak.h" #include "crypto/cn/CnAlgo.h" #include "crypto/cn/CryptoNight_monero.h" #include "crypto/cn/CryptoNight.h" #include "crypto/cn/soft_aes.h" #ifdef XMRIG_VAES # include "crypto/cn/CryptoNight_x86_vaes.h" #endif extern "C" { #include "crypto/cn/c_groestl.h" #include "crypto/cn/c_blake256.h" #include "crypto/cn/c_jh.h" #include "crypto/cn/c_skein.h" } static inline void do_blake_hash(const uint8_t *input, size_t len, uint8_t *output) { blake256_hash(output, input, len); } static inline void do_groestl_hash(const uint8_t *input, size_t len, uint8_t *output) { groestl(input, len * 8, output); } static inline void do_jh_hash(const uint8_t *input, size_t len, uint8_t *output) { jh_hash(32 * 8, input, 8 * len, output); } static inline void do_skein_hash(const uint8_t *input, size_t len, uint8_t *output) { xmr_skein(input, output); } void (* const extra_hashes[4])(const uint8_t *, size_t, uint8_t *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash}; #if (defined(__i386__) || defined(_M_IX86)) && !(defined(__clang__) && defined(__clang_major__) && (__clang_major__ >= 15)) static inline int64_t _mm_cvtsi128_si64(__m128i a) { return ((uint64_t)(uint32_t)_mm_cvtsi128_si32(a) | ((uint64_t)(uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(a, 4)) << 32)); } static inline __m128i _mm_cvtsi64_si128(int64_t a) { return _mm_set_epi64x(0, a); } #endif // This will shift and xor tmp1 into itself as 4 32-bit vals such as // sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1) static inline __m128i sl_xor(__m128i tmp1) { __m128i tmp4; tmp4 = _mm_slli_si128(tmp1, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); tmp4 = _mm_slli_si128(tmp4, 0x04); tmp1 = _mm_xor_si128(tmp1, tmp4); return tmp1; } template static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2) { __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon); xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem *xout0 = sl_xor(*xout0); *xout0 = _mm_xor_si128(*xout0, xout1); xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem *xout2 = sl_xor(*xout2); *xout2 = _mm_xor_si128(*xout2, xout1); } template static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2) { __m128i xout1 = soft_aeskeygenassist(*xout2); xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem *xout0 = sl_xor(*xout0); *xout0 = _mm_xor_si128(*xout0, xout1); xout1 = soft_aeskeygenassist<0x00>(*xout0); xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem *xout2 = sl_xor(*xout2); *xout2 = _mm_xor_si128(*xout2, xout1); } template static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9) { __m128i xout0 = _mm_load_si128(memory); __m128i xout2 = _mm_load_si128(memory + 1); *k0 = xout0; *k1 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : aes_genkey_sub<0x01>(&xout0, &xout2); *k2 = xout0; *k3 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : aes_genkey_sub<0x02>(&xout0, &xout2); *k4 = xout0; *k5 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : aes_genkey_sub<0x04>(&xout0, &xout2); *k6 = xout0; *k7 = xout2; SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : aes_genkey_sub<0x08>(&xout0, &xout2); *k8 = xout0; *k9 = xout2; } static FORCEINLINE void soft_aesenc(void* __restrict ptr, const void* __restrict key, const uint32_t* __restrict t) { uint32_t x0 = ((const uint32_t*)(ptr))[0]; uint32_t x1 = ((const uint32_t*)(ptr))[1]; uint32_t x2 = ((const uint32_t*)(ptr))[2]; uint32_t x3 = ((const uint32_t*)(ptr))[3]; uint32_t y0 = t[x0 & 0xff]; x0 >>= 8; uint32_t y1 = t[x1 & 0xff]; x1 >>= 8; uint32_t y2 = t[x2 & 0xff]; x2 >>= 8; uint32_t y3 = t[x3 & 0xff]; x3 >>= 8; t += 256; y0 ^= t[x1 & 0xff]; x1 >>= 8; y1 ^= t[x2 & 0xff]; x2 >>= 8; y2 ^= t[x3 & 0xff]; x3 >>= 8; y3 ^= t[x0 & 0xff]; x0 >>= 8; t += 256; y0 ^= t[x2 & 0xff]; x2 >>= 8; y1 ^= t[x3 & 0xff]; x3 >>= 8; y2 ^= t[x0 & 0xff]; x0 >>= 8; y3 ^= t[x1 & 0xff]; x1 >>= 8; t += 256; y0 ^= t[x3]; y1 ^= t[x0]; y2 ^= t[x1]; y3 ^= t[x2]; ((uint32_t*)ptr)[0] = y0 ^ ((uint32_t*)key)[0]; ((uint32_t*)ptr)[1] = y1 ^ ((uint32_t*)key)[1]; ((uint32_t*)ptr)[2] = y2 ^ ((uint32_t*)key)[2]; ((uint32_t*)ptr)[3] = y3 ^ ((uint32_t*)key)[3]; } static FORCEINLINE __m128i soft_aesenc(const void* __restrict ptr, const __m128i key, const uint32_t* __restrict t) { uint32_t x0 = ((const uint32_t*)(ptr))[0]; uint32_t x1 = ((const uint32_t*)(ptr))[1]; uint32_t x2 = ((const uint32_t*)(ptr))[2]; uint32_t x3 = ((const uint32_t*)(ptr))[3]; uint32_t y0 = t[x0 & 0xff]; x0 >>= 8; uint32_t y1 = t[x1 & 0xff]; x1 >>= 8; uint32_t y2 = t[x2 & 0xff]; x2 >>= 8; uint32_t y3 = t[x3 & 0xff]; x3 >>= 8; t += 256; y0 ^= t[x1 & 0xff]; x1 >>= 8; y1 ^= t[x2 & 0xff]; x2 >>= 8; y2 ^= t[x3 & 0xff]; x3 >>= 8; y3 ^= t[x0 & 0xff]; x0 >>= 8; t += 256; y0 ^= t[x2 & 0xff]; x2 >>= 8; y1 ^= t[x3 & 0xff]; x3 >>= 8; y2 ^= t[x0 & 0xff]; x0 >>= 8; y3 ^= t[x1 & 0xff]; x1 >>= 8; y0 ^= t[x3 + 256]; y1 ^= t[x0 + 256]; y2 ^= t[x1 + 256]; y3 ^= t[x2 + 256]; return _mm_xor_si128(_mm_set_epi32(y3, y2, y1, y0), key); } template void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7); template<> NOINLINE void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) { *x0 = soft_aesenc((uint32_t*)x0, key, (const uint32_t*)saes_table); *x1 = soft_aesenc((uint32_t*)x1, key, (const uint32_t*)saes_table); *x2 = soft_aesenc((uint32_t*)x2, key, (const uint32_t*)saes_table); *x3 = soft_aesenc((uint32_t*)x3, key, (const uint32_t*)saes_table); *x4 = soft_aesenc((uint32_t*)x4, key, (const uint32_t*)saes_table); *x5 = soft_aesenc((uint32_t*)x5, key, (const uint32_t*)saes_table); *x6 = soft_aesenc((uint32_t*)x6, key, (const uint32_t*)saes_table); *x7 = soft_aesenc((uint32_t*)x7, key, (const uint32_t*)saes_table); } template<> FORCEINLINE void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7) { *x0 = _mm_aesenc_si128(*x0, key); *x1 = _mm_aesenc_si128(*x1, key); *x2 = _mm_aesenc_si128(*x2, key); *x3 = _mm_aesenc_si128(*x3, key); *x4 = _mm_aesenc_si128(*x4, key); *x5 = _mm_aesenc_si128(*x5, key); *x6 = _mm_aesenc_si128(*x6, key); *x7 = _mm_aesenc_si128(*x7, key); } inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7) { __m128i tmp0 = x0; x0 = _mm_xor_si128(x0, x1); x1 = _mm_xor_si128(x1, x2); x2 = _mm_xor_si128(x2, x3); x3 = _mm_xor_si128(x3, x4); x4 = _mm_xor_si128(x4, x5); x5 = _mm_xor_si128(x5, x6); x6 = _mm_xor_si128(x6, x7); x7 = _mm_xor_si128(x7, tmp0); } namespace xmrig { template static inline constexpr uint64_t interleaved_index(uint64_t k) { return ((k & ~63ULL) << interleave) | (k & 63); } template<> inline constexpr uint64_t interleaved_index<0>(uint64_t k) { return k; } template static NOINLINE void cn_explode_scratchpad(cryptonight_ctx *ctx) { constexpr CnAlgo props; # ifdef XMRIG_VAES if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) { cn_explode_scratchpad_vaes(ctx, props.memory(), props.half_mem()); return; } # endif constexpr size_t N = (props.memory() / sizeof(__m128i)) / (props.half_mem() ? 2 : 1); __m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; const __m128i* input = reinterpret_cast(ctx->state); __m128i* output = reinterpret_cast<__m128i*>(ctx->memory); aes_genkey(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); if (props.half_mem() && !ctx->first_half) { const __m128i* p = reinterpret_cast(ctx->save_state); xin0 = _mm_load_si128(p + 0); xin1 = _mm_load_si128(p + 1); xin2 = _mm_load_si128(p + 2); xin3 = _mm_load_si128(p + 3); xin4 = _mm_load_si128(p + 4); xin5 = _mm_load_si128(p + 5); xin6 = _mm_load_si128(p + 6); xin7 = _mm_load_si128(p + 7); } else { xin0 = _mm_load_si128(input + 4); xin1 = _mm_load_si128(input + 5); xin2 = _mm_load_si128(input + 6); xin3 = _mm_load_si128(input + 7); xin4 = _mm_load_si128(input + 8); xin5 = _mm_load_si128(input + 9); xin6 = _mm_load_si128(input + 10); xin7 = _mm_load_si128(input + 11); } if (props.isHeavy()) { for (size_t i = 0; i < 16; i++) { aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7); } } constexpr int output_increment = (64 << interleave) / sizeof(__m128i); constexpr int prefetch_dist = 2048 / sizeof(__m128i); __m128i* e = output + (N << interleave) - prefetch_dist; __m128i* prefetch_ptr = output + prefetch_dist; for (int i = 0; i < 2; ++i) { do { _mm_prefetch((const char*)(prefetch_ptr), _MM_HINT_T0); _mm_prefetch((const char*)(prefetch_ptr + output_increment), _MM_HINT_T0); aes_round(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); aes_round(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7); _mm_store_si128(output + 0, xin0); _mm_store_si128(output + 1, xin1); _mm_store_si128(output + 2, xin2); _mm_store_si128(output + 3, xin3); _mm_store_si128(output + output_increment + 0, xin4); _mm_store_si128(output + output_increment + 1, xin5); _mm_store_si128(output + output_increment + 2, xin6); _mm_store_si128(output + output_increment + 3, xin7); output += output_increment * 2; prefetch_ptr += output_increment * 2; } while (output < e); e += prefetch_dist; prefetch_ptr = output; } if (props.half_mem() && ctx->first_half) { __m128i* p = reinterpret_cast<__m128i*>(ctx->save_state); _mm_store_si128(p + 0, xin0); _mm_store_si128(p + 1, xin1); _mm_store_si128(p + 2, xin2); _mm_store_si128(p + 3, xin3); _mm_store_si128(p + 4, xin4); _mm_store_si128(p + 5, xin5); _mm_store_si128(p + 6, xin6); _mm_store_si128(p + 7, xin7); } } template static NOINLINE void cn_implode_scratchpad(cryptonight_ctx *ctx) { constexpr CnAlgo props; # ifdef XMRIG_VAES if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) { cn_implode_scratchpad_vaes(ctx, props.memory(), props.half_mem()); return; } # endif constexpr bool IS_HEAVY = props.isHeavy(); constexpr size_t N = (props.memory() / sizeof(__m128i)) / (props.half_mem() ? 2 : 1); __m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7; __m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9; const __m128i *input = reinterpret_cast(ctx->memory); __m128i *output = reinterpret_cast<__m128i*>(ctx->state); aes_genkey(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9); xout0 = _mm_load_si128(output + 4); xout1 = _mm_load_si128(output + 5); xout2 = _mm_load_si128(output + 6); xout3 = _mm_load_si128(output + 7); xout4 = _mm_load_si128(output + 8); xout5 = _mm_load_si128(output + 9); xout6 = _mm_load_si128(output + 10); xout7 = _mm_load_si128(output + 11); const __m128i* input_begin = input; for (size_t part = 0; part < (props.half_mem() ? 2 : 1); ++part) { if (props.half_mem() && (part == 1)) { input = input_begin; ctx->first_half = false; cn_explode_scratchpad(ctx); } for (size_t i = 0; i < N;) { xout0 = _mm_xor_si128(_mm_load_si128(input + 0), xout0); xout1 = _mm_xor_si128(_mm_load_si128(input + 1), xout1); xout2 = _mm_xor_si128(_mm_load_si128(input + 2), xout2); xout3 = _mm_xor_si128(_mm_load_si128(input + 3), xout3); constexpr int input_increment = (64 << interleave) / sizeof(__m128i); xout4 = _mm_xor_si128(_mm_load_si128(input + input_increment + 0), xout4); xout5 = _mm_xor_si128(_mm_load_si128(input + input_increment + 1), xout5); xout6 = _mm_xor_si128(_mm_load_si128(input + input_increment + 2), xout6); xout7 = _mm_xor_si128(_mm_load_si128(input + input_increment + 3), xout7); input += input_increment * 2; i += 8; if (i < N) { _mm_prefetch((const char*)(input), _MM_HINT_T0); _mm_prefetch((const char*)(input + input_increment), _MM_HINT_T0); } aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); if (IS_HEAVY) { mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); } } } if (IS_HEAVY) { input = input_begin; for (size_t i = 0; i < N;) { xout0 = _mm_xor_si128(_mm_load_si128(input + 0), xout0); xout1 = _mm_xor_si128(_mm_load_si128(input + 1), xout1); xout2 = _mm_xor_si128(_mm_load_si128(input + 2), xout2); xout3 = _mm_xor_si128(_mm_load_si128(input + 3), xout3); input += (64 << interleave) / sizeof(__m128i); xout4 = _mm_xor_si128(_mm_load_si128(input + 0), xout4); xout5 = _mm_xor_si128(_mm_load_si128(input + 1), xout5); xout6 = _mm_xor_si128(_mm_load_si128(input + 2), xout6); xout7 = _mm_xor_si128(_mm_load_si128(input + 3), xout7); input += (64 << interleave) / sizeof(__m128i); i += 8; if ((interleave > 0) && (i < props.memory() / sizeof(__m128i))) { _mm_prefetch((const char*)(input), _MM_HINT_T0); _mm_prefetch((const char*)(input + (64 << interleave) / sizeof(__m128i)), _MM_HINT_T0); } aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); } for (size_t i = 0; i < 16; i++) { aes_round(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); aes_round(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7); mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7); } } _mm_store_si128(output + 4, xout0); _mm_store_si128(output + 5, xout1); _mm_store_si128(output + 6, xout2); _mm_store_si128(output + 7, xout3); _mm_store_si128(output + 8, xout4); _mm_store_si128(output + 9, xout5); _mm_store_si128(output + 10, xout6); _mm_store_si128(output + 11, xout7); } } /* namespace xmrig */ static inline __m128i aes_round_tweak_div(const __m128i &in, const __m128i &key) { alignas(16) uint32_t k[4]; alignas(16) uint32_t x[4]; _mm_store_si128((__m128i*) k, key); _mm_store_si128((__m128i*) x, _mm_xor_si128(in, _mm_set_epi64x(0xffffffffffffffff, 0xffffffffffffffff))); #define BYTE(p, i) ((unsigned char*)&x[p])[i] k[0] ^= saes_table[0][BYTE(0, 0)] ^ saes_table[1][BYTE(1, 1)] ^ saes_table[2][BYTE(2, 2)] ^ saes_table[3][BYTE(3, 3)]; x[0] ^= k[0]; k[1] ^= saes_table[0][BYTE(1, 0)] ^ saes_table[1][BYTE(2, 1)] ^ saes_table[2][BYTE(3, 2)] ^ saes_table[3][BYTE(0, 3)]; x[1] ^= k[1]; k[2] ^= saes_table[0][BYTE(2, 0)] ^ saes_table[1][BYTE(3, 1)] ^ saes_table[2][BYTE(0, 2)] ^ saes_table[3][BYTE(1, 3)]; x[2] ^= k[2]; k[3] ^= saes_table[0][BYTE(3, 0)] ^ saes_table[1][BYTE(0, 1)] ^ saes_table[2][BYTE(1, 2)] ^ saes_table[3][BYTE(2, 3)]; #undef BYTE return _mm_load_si128((__m128i*)k); } static inline __m128i int_sqrt_v2(const uint64_t n0) { __m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(n0 >> 12), _mm_set_epi64x(0, 1023ULL << 52))); x = _mm_sqrt_sd(_mm_setzero_pd(), x); uint64_t r = static_cast(_mm_cvtsi128_si64(_mm_castpd_si128(x))); const uint64_t s = r >> 20; r >>= 19; uint64_t x2 = (s - (1022ULL << 32)) * (r - s - (1022ULL << 32) + 1); # if (defined(_MSC_VER) || __GNUC__ > 7 || (__GNUC__ == 7 && __GNUC_MINOR__ > 1)) && (defined(__x86_64__) || defined(_M_AMD64)) _addcarry_u64(_subborrow_u64(0, x2, n0, (unsigned long long int*)&x2), r, 0, (unsigned long long int*)&r); # else if (x2 < n0) ++r; # endif return _mm_cvtsi64_si128(r); } void v4_soft_aes_compile_code(const V4_Instruction *code, int code_size, void *machine_code, xmrig::Assembly ASM); alignas(64) static const uint32_t tweak1_table[256] = { 268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456 }; namespace xmrig { template static inline void cryptonight_monero_tweak(uint64_t *mem_out, const uint8_t *l, uint64_t idx, __m128i ax0, __m128i bx0, __m128i bx1, __m128i& cx) { constexpr CnAlgo props; if (props.base() == Algorithm::CN_2) { VARIANT2_SHUFFLE(l, idx, ax0, bx0, bx1, cx, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0)); _mm_store_si128(reinterpret_cast<__m128i *>(mem_out), _mm_xor_si128(bx0, cx)); } else { __m128i tmp = _mm_xor_si128(bx0, cx); mem_out[0] = _mm_cvtsi128_si64(tmp); tmp = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(tmp))); uint64_t vh = _mm_cvtsi128_si64(tmp); mem_out[1] = vh ^ tweak1_table[static_cast(vh) >> 24]; } } static inline void cryptonight_conceal_tweak(__m128i& cx, __m128& conc_var) { __m128 r = _mm_add_ps(_mm_cvtepi32_ps(cx), conc_var); r = _mm_mul_ps(r, _mm_mul_ps(r, r)); r = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x807FFFFF)), r); r = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), r); __m128 c_old = conc_var; conc_var = _mm_add_ps(conc_var, r); c_old = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x807FFFFF)), c_old); c_old = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), c_old); __m128 nc = _mm_mul_ps(c_old, _mm_set1_ps(536870880.0f)); cx = _mm_xor_si128(cx, _mm_cvttps_epi32(nc)); } #ifdef XMRIG_FEATURE_ASM template static void cryptonight_single_hash_gr_sse41(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height); #endif template inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { # ifdef XMRIG_FEATURE_ASM if (!SOFT_AES) { switch (ALGO) { case Algorithm::CN_GR_0: case Algorithm::CN_GR_1: case Algorithm::CN_GR_2: case Algorithm::CN_GR_3: case Algorithm::CN_GR_4: case Algorithm::CN_GR_5: if (cn_sse41_enabled) { cryptonight_single_hash_gr_sse41(input, size, output, ctx, height); return; } break; default: break; } } # endif constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; # else constexpr bool IS_CN_HEAVY_TUBE = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32); return; } keccak(input, size, ctx[0]->state); if (props.half_mem()) { ctx[0]->first_half = true; } cn_explode_scratchpad(ctx[0]); uint64_t *h0 = reinterpret_cast(ctx[0]->state); uint8_t *l0 = ctx[0]->memory; # ifdef XMRIG_FEATURE_ASM if (SOFT_AES && props.isR()) { if (!ctx[0]->generated_code_data.match(ALGO, height)) { V4_Instruction code[256]; const int code_size = v4_random_math_init(code, height); if (ALGO == Algorithm::CN_R) { v4_soft_aes_compile_code(code, code_size, reinterpret_cast(ctx[0]->generated_code), Assembly::NONE); } ctx[0]->generated_code_data = { ALGO, height }; } ctx[0]->saes_table = reinterpret_cast(saes_table); ctx[0]->generated_code(ctx); } else { # endif VARIANT1_INIT(0); VARIANT2_INIT(0); VARIANT2_SET_ROUNDING_MODE(); VARIANT4_RANDOM_MATH_INIT(0); uint64_t al0 = h0[0] ^ h0[4]; uint64_t ah0 = h0[1] ^ h0[5]; uint64_t idx0 = al0; __m128i bx0 = _mm_set_epi64x(static_cast(h0[3] ^ h0[7]), static_cast(h0[2] ^ h0[6])); __m128i bx1 = _mm_set_epi64x(static_cast(h0[9] ^ h0[11]), static_cast(h0[8] ^ h0[10])); __m128 conc_var; if (ALGO == Algorithm::CN_CCX) { conc_var = _mm_setzero_ps(); RESTORE_ROUNDING_MODE(); } for (size_t i = 0; i < props.iterations(); i++) { __m128i cx; if (IS_CN_HEAVY_TUBE || !SOFT_AES) { cx = _mm_load_si128(reinterpret_cast(&l0[interleaved_index(idx0 & MASK)])); if (ALGO == Algorithm::CN_CCX) { cryptonight_conceal_tweak(cx, conc_var); } } const __m128i ax0 = _mm_set_epi64x(static_cast(ah0), static_cast(al0)); if (IS_CN_HEAVY_TUBE) { cx = aes_round_tweak_div(cx, ax0); } else if (SOFT_AES) { if (ALGO == Algorithm::CN_CCX) { cx = _mm_load_si128(reinterpret_cast(&l0[interleaved_index(idx0 & MASK)])); cryptonight_conceal_tweak(cx, conc_var); cx = soft_aesenc(&cx, ax0, reinterpret_cast(saes_table)); } else { cx = soft_aesenc(&l0[interleaved_index(idx0 & MASK)], ax0, reinterpret_cast(saes_table)); } } else { cx = _mm_aesenc_si128(cx, ax0); } if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) { cryptonight_monero_tweak(reinterpret_cast(&l0[interleaved_index(idx0 & MASK)]), l0, idx0 & MASK, ax0, bx0, bx1, cx); } else { _mm_store_si128(reinterpret_cast<__m128i *>(&l0[interleaved_index(idx0 & MASK)]), _mm_xor_si128(bx0, cx)); } idx0 = static_cast(_mm_cvtsi128_si64(cx)); uint64_t hi, lo, cl, ch; cl = (reinterpret_cast(&l0[interleaved_index(idx0 & MASK)]))[0]; ch = (reinterpret_cast(&l0[interleaved_index(idx0 & MASK)]))[1]; if (BASE == Algorithm::CN_2) { if (props.isR()) { VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx0, bx1); if (ALGO == Algorithm::CN_R) { al0 ^= r0[2] | (static_cast(r0[3]) << 32); ah0 ^= r0[0] | (static_cast(r0[1]) << 32); } } else { VARIANT2_INTEGER_MATH(0, cl, cx); } } lo = __umul128(idx0, cl, &hi); if (BASE == Algorithm::CN_2) { if (ALGO == Algorithm::CN_R) { VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx0, bx1, cx, 0); } else { VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx0, bx1, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0)); } } al0 += hi; ah0 += lo; reinterpret_cast(&l0[interleaved_index(idx0 & MASK)])[0] = al0; if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { reinterpret_cast(&l0[interleaved_index(idx0 & MASK)])[1] = ah0 ^ tweak1_2_0 ^ al0; } else if (BASE == Algorithm::CN_1) { reinterpret_cast(&l0[interleaved_index(idx0 & MASK)])[1] = ah0 ^ tweak1_2_0; } else { reinterpret_cast(&l0[interleaved_index(idx0 & MASK)])[1] = ah0; } al0 ^= cl; ah0 ^= ch; idx0 = al0; # ifdef XMRIG_ALGO_CN_HEAVY if (props.isHeavy()) { int64_t n = ((int64_t*)&l0[interleaved_index(idx0 & MASK)])[0]; int64_t d = ((int32_t*)&l0[interleaved_index(idx0 & MASK)])[2]; int64_t d5; # if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 8)) || !defined(XMRIG_64_BIT) d5 = d | 5; # else // Workaround for stupid GCC which converts to 32 bit before doing "| 5" and then converts back to 64 bit asm("mov %1, %0\n\tor $5, %0" : "=r"(d5) : "r"(d)); # endif int64_t q = n / d5; ((int64_t*)&l0[interleaved_index(idx0 & MASK)])[0] = n ^ q; if (ALGO == Algorithm::CN_HEAVY_XHV) { d = ~d; } idx0 = d ^ q; } # endif if (BASE == Algorithm::CN_2) { bx1 = bx0; } bx0 = cx; } # ifdef XMRIG_FEATURE_ASM } # endif cn_implode_scratchpad(ctx[0]); keccakf(h0, 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); } } /* namespace xmrig */ #ifdef XMRIG_FEATURE_ASM extern "C" void cnv1_single_mainloop_asm(cryptonight_ctx * *ctx); extern "C" void cnv1_double_mainloop_asm(cryptonight_ctx **ctx); extern "C" void cnv1_quad_mainloop_asm(cryptonight_ctx **ctx); extern "C" void cnv2_mainloop_ivybridge_asm(cryptonight_ctx **ctx); #ifdef XMRIG_FEATURE_ASM_AMD extern "C" void cnv2_mainloop_ryzen_asm(cryptonight_ctx **ctx); extern "C" void cnv2_mainloop_bulldozer_asm(cryptonight_ctx **ctx); #endif extern "C" void cnv2_double_mainloop_sandybridge_asm(cryptonight_ctx **ctx); extern "C" void cnv2_rwz_mainloop_asm(cryptonight_ctx **ctx); extern "C" void cnv2_rwz_double_mainloop_asm(cryptonight_ctx **ctx); #ifdef XMRIG_FEATURE_ASM_AMD extern "C" void cnv2_upx_double_mainloop_zen3_asm(cryptonight_ctx **ctx); #endif namespace xmrig { typedef void (*cn_mainloop_fun)(cryptonight_ctx **ctx); extern cn_mainloop_fun cn_half_mainloop_ivybridge_asm; #ifdef XMRIG_FEATURE_ASM_AMD extern cn_mainloop_fun cn_half_mainloop_ryzen_asm; extern cn_mainloop_fun cn_half_mainloop_bulldozer_asm; #endif extern cn_mainloop_fun cn_half_double_mainloop_sandybridge_asm; extern cn_mainloop_fun cn_trtl_mainloop_ivybridge_asm; #ifdef XMRIG_FEATURE_ASM_AMD extern cn_mainloop_fun cn_trtl_mainloop_ryzen_asm; extern cn_mainloop_fun cn_trtl_mainloop_bulldozer_asm; #endif extern cn_mainloop_fun cn_trtl_double_mainloop_sandybridge_asm; extern cn_mainloop_fun cn_tlo_mainloop_ivybridge_asm; #ifdef XMRIG_FEATURE_ASM_AMD extern cn_mainloop_fun cn_tlo_mainloop_ryzen_asm; extern cn_mainloop_fun cn_tlo_mainloop_bulldozer_asm; #endif extern cn_mainloop_fun cn_tlo_double_mainloop_sandybridge_asm; extern cn_mainloop_fun cn_zls_mainloop_ivybridge_asm; #ifdef XMRIG_FEATURE_ASM_AMD extern cn_mainloop_fun cn_zls_mainloop_ryzen_asm; extern cn_mainloop_fun cn_zls_mainloop_bulldozer_asm; #endif extern cn_mainloop_fun cn_zls_double_mainloop_sandybridge_asm; extern cn_mainloop_fun cn_double_mainloop_ivybridge_asm; #ifdef XMRIG_FEATURE_ASM_AMD extern cn_mainloop_fun cn_double_mainloop_ryzen_asm; extern cn_mainloop_fun cn_double_mainloop_bulldozer_asm; #endif extern cn_mainloop_fun cn_double_double_mainloop_sandybridge_asm; extern cn_mainloop_fun cn_upx2_mainloop_asm; extern cn_mainloop_fun cn_upx2_double_mainloop_asm; extern cn_mainloop_fun cn_gr0_single_mainloop_asm; extern cn_mainloop_fun cn_gr1_single_mainloop_asm; extern cn_mainloop_fun cn_gr2_single_mainloop_asm; extern cn_mainloop_fun cn_gr3_single_mainloop_asm; extern cn_mainloop_fun cn_gr4_single_mainloop_asm; extern cn_mainloop_fun cn_gr5_single_mainloop_asm; extern cn_mainloop_fun cn_gr0_double_mainloop_asm; extern cn_mainloop_fun cn_gr1_double_mainloop_asm; extern cn_mainloop_fun cn_gr2_double_mainloop_asm; extern cn_mainloop_fun cn_gr3_double_mainloop_asm; extern cn_mainloop_fun cn_gr4_double_mainloop_asm; extern cn_mainloop_fun cn_gr5_double_mainloop_asm; extern cn_mainloop_fun cn_gr0_quad_mainloop_asm; extern cn_mainloop_fun cn_gr1_quad_mainloop_asm; extern cn_mainloop_fun cn_gr2_quad_mainloop_asm; extern cn_mainloop_fun cn_gr3_quad_mainloop_asm; extern cn_mainloop_fun cn_gr4_quad_mainloop_asm; extern cn_mainloop_fun cn_gr5_quad_mainloop_asm; } // namespace xmrig void v4_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM); void v4_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM); template void cn_r_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM) { v4_compile_code(code, code_size, machine_code, ASM); } template void cn_r_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM) { v4_compile_code_double(code, code_size, machine_code, ASM); } namespace xmrig { template inline void cryptonight_single_hash_asm(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; if (props.isR() && !ctx[0]->generated_code_data.match(ALGO, height)) { V4_Instruction code[256]; const int code_size = v4_random_math_init(code, height); cn_r_compile_code(code, code_size, reinterpret_cast(ctx[0]->generated_code), ASM); ctx[0]->generated_code_data = { ALGO, height }; } keccak(input, size, ctx[0]->state); if (props.half_mem()) { ctx[0]->first_half = true; } cn_explode_scratchpad(ctx[0]); if (ALGO == Algorithm::CN_2) { if (ASM == Assembly::INTEL) { cnv2_mainloop_ivybridge_asm(ctx); } # ifdef XMRIG_FEATURE_ASM_AMD else if (ASM == Assembly::RYZEN) { cnv2_mainloop_ryzen_asm(ctx); } else { cnv2_mainloop_bulldozer_asm(ctx); } # endif } else if (ALGO == Algorithm::CN_HALF) { if (ASM == Assembly::INTEL) { cn_half_mainloop_ivybridge_asm(ctx); } # ifdef XMRIG_FEATURE_ASM_AMD else if (ASM == Assembly::RYZEN) { cn_half_mainloop_ryzen_asm(ctx); } else { cn_half_mainloop_bulldozer_asm(ctx); } # endif } # ifdef XMRIG_ALGO_CN_PICO else if (ALGO == Algorithm::CN_PICO_0) { if (ASM == Assembly::INTEL) { cn_trtl_mainloop_ivybridge_asm(ctx); } # ifdef XMRIG_FEATURE_ASM_AMD else if (ASM == Assembly::RYZEN) { cn_trtl_mainloop_ryzen_asm(ctx); } else { cn_trtl_mainloop_bulldozer_asm(ctx); } # endif } else if (ALGO == Algorithm::CN_PICO_TLO) { if (ASM == Assembly::INTEL) { cn_tlo_mainloop_ivybridge_asm(ctx); } # ifdef XMRIG_FEATURE_ASM_AMD else if (ASM == Assembly::RYZEN) { cn_tlo_mainloop_ryzen_asm(ctx); } else { cn_tlo_mainloop_bulldozer_asm(ctx); } # endif } # endif else if (ALGO == Algorithm::CN_RWZ) { cnv2_rwz_mainloop_asm(ctx); } else if (ALGO == Algorithm::CN_ZLS) { if (ASM == Assembly::INTEL) { cn_zls_mainloop_ivybridge_asm(ctx); } # ifdef XMRIG_FEATURE_ASM_AMD else if (ASM == Assembly::RYZEN) { cn_zls_mainloop_ryzen_asm(ctx); } else { cn_zls_mainloop_bulldozer_asm(ctx); } # endif } else if (ALGO == Algorithm::CN_DOUBLE) { if (ASM == Assembly::INTEL) { cn_double_mainloop_ivybridge_asm(ctx); } # ifdef XMRIG_FEATURE_ASM_AMD else if (ASM == Assembly::RYZEN) { cn_double_mainloop_ryzen_asm(ctx); } else { cn_double_mainloop_bulldozer_asm(ctx); } # endif } # ifdef XMRIG_ALGO_CN_FEMTO else if (ALGO == Algorithm::CN_UPX2) { cn_upx2_mainloop_asm(ctx); } # endif else if (props.isR()) { ctx[0]->generated_code(ctx); } cn_implode_scratchpad(ctx[0]); keccakf(reinterpret_cast(ctx[0]->state), 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); } template inline void cryptonight_double_hash_asm(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; if (props.isR() && !ctx[0]->generated_code_data.match(ALGO, height)) { V4_Instruction code[256]; const int code_size = v4_random_math_init(code, height); cn_r_compile_code_double(code, code_size, reinterpret_cast(ctx[0]->generated_code), ASM); ctx[0]->generated_code_data = { ALGO, height }; } keccak(input, size, ctx[0]->state); keccak(input + size, size, ctx[1]->state); if (props.half_mem()) { ctx[0]->first_half = true; ctx[1]->first_half = true; } # ifdef XMRIG_VAES if (!props.isHeavy() && cn_vaes_enabled) { cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); } else # endif { cn_explode_scratchpad(ctx[0]); cn_explode_scratchpad(ctx[1]); } if (ALGO == Algorithm::CN_2) { cnv2_double_mainloop_sandybridge_asm(ctx); } else if (ALGO == Algorithm::CN_HALF) { cn_half_double_mainloop_sandybridge_asm(ctx); } # ifdef XMRIG_ALGO_CN_PICO else if (ALGO == Algorithm::CN_PICO_0) { cn_trtl_double_mainloop_sandybridge_asm(ctx); } else if (ALGO == Algorithm::CN_PICO_TLO) { cn_tlo_double_mainloop_sandybridge_asm(ctx); } # endif # ifdef XMRIG_ALGO_CN_FEMTO else if (ALGO == Algorithm::CN_UPX2) { # ifdef XMRIG_FEATURE_ASM_AMD if (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3) { cnv2_upx_double_mainloop_zen3_asm(ctx); } else { cn_upx2_double_mainloop_asm(ctx); } # else cn_upx2_double_mainloop_asm(ctx); # endif } # endif else if (ALGO == Algorithm::CN_RWZ) { cnv2_rwz_double_mainloop_asm(ctx); } else if (ALGO == Algorithm::CN_ZLS) { cn_zls_double_mainloop_sandybridge_asm(ctx); } else if (ALGO == Algorithm::CN_DOUBLE) { cn_double_double_mainloop_sandybridge_asm(ctx); } else if (props.isR()) { ctx[0]->generated_code(ctx); } # ifdef XMRIG_VAES if (!props.isHeavy() && cn_vaes_enabled) { cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); } else # endif { cn_implode_scratchpad(ctx[0]); cn_implode_scratchpad(ctx[1]); } keccakf(reinterpret_cast(ctx[0]->state), 24); keccakf(reinterpret_cast(ctx[1]->state), 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32); } } /* namespace xmrig */ #endif namespace xmrig { #ifdef XMRIG_FEATURE_ASM template static NOINLINE void cryptonight_single_hash_gr_sse41(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr Algorithm::Id BASE = props.base(); if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32); return; } keccak(input, size, ctx[0]->state); if (props.half_mem()) { ctx[0]->first_half = true; } cn_explode_scratchpad(ctx[0]); VARIANT1_INIT(0); ctx[0]->tweak1_2 = tweak1_2_0; ctx[0]->tweak1_table = tweak1_table; if (ALGO == Algorithm::CN_GR_0) cn_gr0_single_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_1) cn_gr1_single_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_2) cn_gr2_single_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_3) cn_gr3_single_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_4) cn_gr4_single_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_5) cn_gr5_single_mainloop_asm(ctx); cn_implode_scratchpad(ctx[0]); keccakf(reinterpret_cast(ctx[0]->state), 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); } template static NOINLINE void cryptonight_double_hash_gr_sse41(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr Algorithm::Id BASE = props.base(); if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 64); return; } keccak(input, size, ctx[0]->state); keccak(input + size, size, ctx[1]->state); if (props.half_mem()) { ctx[0]->first_half = true; ctx[1]->first_half = true; } # ifdef XMRIG_VAES if (!props.isHeavy() && cn_vaes_enabled) { cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); } else # endif { cn_explode_scratchpad(ctx[0]); cn_explode_scratchpad(ctx[1]); } VARIANT1_INIT(0); VARIANT1_INIT(1); ctx[0]->tweak1_2 = tweak1_2_0; ctx[1]->tweak1_2 = tweak1_2_1; ctx[0]->tweak1_table = tweak1_table; if (ALGO == Algorithm::CN_GR_0) cn_gr0_double_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_1) cn_gr1_double_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_2) cn_gr2_double_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_3) cn_gr3_double_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_4) cn_gr4_double_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_5) cn_gr5_double_mainloop_asm(ctx); # ifdef XMRIG_VAES if (!props.isHeavy() && cn_vaes_enabled) { cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); } else # endif { cn_implode_scratchpad(ctx[0]); cn_implode_scratchpad(ctx[1]); } keccakf(reinterpret_cast(ctx[0]->state), 24); keccakf(reinterpret_cast(ctx[1]->state), 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32); } #endif template inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { # ifdef XMRIG_FEATURE_ASM if (!SOFT_AES) { switch (ALGO) { case Algorithm::CN_GR_0: case Algorithm::CN_GR_1: case Algorithm::CN_GR_2: case Algorithm::CN_GR_3: case Algorithm::CN_GR_4: case Algorithm::CN_GR_5: if (cn_sse41_enabled) { cryptonight_double_hash_gr_sse41(input, size, output, ctx, height); return; } break; default: break; } } # endif constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; # else constexpr bool IS_CN_HEAVY_TUBE = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 64); return; } keccak(input, size, ctx[0]->state); keccak(input + size, size, ctx[1]->state); uint8_t *l0 = ctx[0]->memory; uint8_t *l1 = ctx[1]->memory; uint64_t *h0 = reinterpret_cast(ctx[0]->state); uint64_t *h1 = reinterpret_cast(ctx[1]->state); VARIANT1_INIT(0); VARIANT1_INIT(1); VARIANT2_INIT(0); VARIANT2_INIT(1); VARIANT2_SET_ROUNDING_MODE(); VARIANT4_RANDOM_MATH_INIT(0); VARIANT4_RANDOM_MATH_INIT(1); if (props.half_mem()) { ctx[0]->first_half = true; ctx[1]->first_half = true; } # ifdef XMRIG_VAES if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) { cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); } else # endif { cn_explode_scratchpad(ctx[0]); cn_explode_scratchpad(ctx[1]); } uint64_t al0 = h0[0] ^ h0[4]; uint64_t al1 = h1[0] ^ h1[4]; uint64_t ah0 = h0[1] ^ h0[5]; uint64_t ah1 = h1[1] ^ h1[5]; __m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]); __m128i bx01 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]); __m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]); __m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]); __m128 conc_var0, conc_var1; if (ALGO == Algorithm::CN_CCX) { conc_var0 = _mm_setzero_ps(); conc_var1 = _mm_setzero_ps(); RESTORE_ROUNDING_MODE(); } uint64_t idx0 = al0; uint64_t idx1 = al1; for (size_t i = 0; i < props.iterations(); i++) { __m128i cx0, cx1; if (IS_CN_HEAVY_TUBE || !SOFT_AES) { cx0 = _mm_load_si128(reinterpret_cast(&l0[idx0 & MASK])); cx1 = _mm_load_si128(reinterpret_cast(&l1[idx1 & MASK])); if (ALGO == Algorithm::CN_CCX) { cryptonight_conceal_tweak(cx0, conc_var0); cryptonight_conceal_tweak(cx1, conc_var1); } } const __m128i ax0 = _mm_set_epi64x(ah0, al0); const __m128i ax1 = _mm_set_epi64x(ah1, al1); if (IS_CN_HEAVY_TUBE) { cx0 = aes_round_tweak_div(cx0, ax0); cx1 = aes_round_tweak_div(cx1, ax1); } else if (SOFT_AES) { if (ALGO == Algorithm::CN_CCX) { cx0 = _mm_load_si128(reinterpret_cast(&l0[idx0 & MASK])); cx1 = _mm_load_si128(reinterpret_cast(&l1[idx1 & MASK])); cryptonight_conceal_tweak(cx0, conc_var0); cryptonight_conceal_tweak(cx1, conc_var1); cx0 = soft_aesenc(&cx0, ax0, reinterpret_cast(saes_table)); cx1 = soft_aesenc(&cx1, ax1, reinterpret_cast(saes_table)); } else { cx0 = soft_aesenc(&l0[idx0 & MASK], ax0, reinterpret_cast(saes_table)); cx1 = soft_aesenc(&l1[idx1 & MASK], ax1, reinterpret_cast(saes_table)); } } else { cx0 = _mm_aesenc_si128(cx0, ax0); cx1 = _mm_aesenc_si128(cx1, ax1); } if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) { cryptonight_monero_tweak((uint64_t*)&l0[idx0 & MASK], l0, idx0 & MASK, ax0, bx00, bx01, cx0); cryptonight_monero_tweak((uint64_t*)&l1[idx1 & MASK], l1, idx1 & MASK, ax1, bx10, bx11, cx1); } else { _mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0)); _mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx10, cx1)); } idx0 = _mm_cvtsi128_si64(cx0); idx1 = _mm_cvtsi128_si64(cx1); uint64_t hi, lo, cl, ch; cl = ((uint64_t*) &l0[idx0 & MASK])[0]; ch = ((uint64_t*) &l0[idx0 & MASK])[1]; if (BASE == Algorithm::CN_2) { if (props.isR()) { VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx00, bx01); if (ALGO == Algorithm::CN_R) { al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32); ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32); } } else { VARIANT2_INTEGER_MATH(0, cl, cx0); } } lo = __umul128(idx0, cl, &hi); if (BASE == Algorithm::CN_2) { if (ALGO == Algorithm::CN_R) { VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx00, bx01, cx0, 0); } else { VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx00, bx01, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0)); } } al0 += hi; ah0 += lo; ((uint64_t*)&l0[idx0 & MASK])[0] = al0; if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { ((uint64_t*) &l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0; } else if (BASE == Algorithm::CN_1) { ((uint64_t*) &l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0; } else { ((uint64_t*) &l0[idx0 & MASK])[1] = ah0; } al0 ^= cl; ah0 ^= ch; idx0 = al0; # ifdef XMRIG_ALGO_CN_HEAVY if (props.isHeavy()) { int64_t n = ((int64_t*)&l0[idx0 & MASK])[0]; int32_t d = ((int32_t*)&l0[idx0 & MASK])[2]; int64_t q = n / (d | 0x5); ((int64_t*)&l0[idx0 & MASK])[0] = n ^ q; if (ALGO == Algorithm::CN_HEAVY_XHV) { d = ~d; } idx0 = d ^ q; } # endif cl = ((uint64_t*) &l1[idx1 & MASK])[0]; ch = ((uint64_t*) &l1[idx1 & MASK])[1]; if (BASE == Algorithm::CN_2) { if (props.isR()) { VARIANT4_RANDOM_MATH(1, al1, ah1, cl, bx10, bx11); if (ALGO == Algorithm::CN_R) { al1 ^= r1[2] | ((uint64_t)(r1[3]) << 32); ah1 ^= r1[0] | ((uint64_t)(r1[1]) << 32); } } else { VARIANT2_INTEGER_MATH(1, cl, cx1); } } lo = __umul128(idx1, cl, &hi); if (BASE == Algorithm::CN_2) { if (ALGO == Algorithm::CN_R) { VARIANT2_SHUFFLE(l1, idx1 & MASK, ax1, bx10, bx11, cx1, 0); } else { VARIANT2_SHUFFLE2(l1, idx1 & MASK, ax1, bx10, bx11, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0)); } } al1 += hi; ah1 += lo; ((uint64_t*)&l1[idx1 & MASK])[0] = al1; if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { ((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1 ^ al1; } else if (BASE == Algorithm::CN_1) { ((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1; } else { ((uint64_t*)&l1[idx1 & MASK])[1] = ah1; } al1 ^= cl; ah1 ^= ch; idx1 = al1; # ifdef XMRIG_ALGO_CN_HEAVY if (props.isHeavy()) { int64_t n = ((int64_t*)&l1[idx1 & MASK])[0]; int32_t d = ((int32_t*)&l1[idx1 & MASK])[2]; int64_t q = n / (d | 0x5); ((int64_t*)&l1[idx1 & MASK])[0] = n ^ q; if (ALGO == Algorithm::CN_HEAVY_XHV) { d = ~d; } idx1 = d ^ q; } # endif if (BASE == Algorithm::CN_2) { bx01 = bx00; bx11 = bx10; } bx00 = cx0; bx10 = cx1; } # ifdef XMRIG_VAES if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) { cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); } else # endif { cn_implode_scratchpad(ctx[0]); cn_implode_scratchpad(ctx[1]); } keccakf(h0, 24); keccakf(h1, 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32); } #ifdef XMRIG_FEATURE_ASM template static NOINLINE void cryptonight_quad_hash_gr_sse41(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr Algorithm::Id BASE = props.base(); if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32 * 4); return; } keccak(input + size * 0, size, ctx[0]->state); keccak(input + size * 1, size, ctx[1]->state); keccak(input + size * 2, size, ctx[2]->state); keccak(input + size * 3, size, ctx[3]->state); if (props.half_mem()) { ctx[0]->first_half = true; ctx[1]->first_half = true; ctx[2]->first_half = true; ctx[3]->first_half = true; } # ifdef XMRIG_VAES if (!props.isHeavy() && cn_vaes_enabled) { cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); cn_explode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem()); } else # endif { cn_explode_scratchpad(ctx[0]); cn_explode_scratchpad(ctx[1]); cn_explode_scratchpad(ctx[2]); cn_explode_scratchpad(ctx[3]); } VARIANT1_INIT(0); ctx[0]->tweak1_2 = tweak1_2_0; VARIANT1_INIT(1); ctx[1]->tweak1_2 = tweak1_2_1; VARIANT1_INIT(2); ctx[2]->tweak1_2 = tweak1_2_2; VARIANT1_INIT(3); ctx[3]->tweak1_2 = tweak1_2_3; ctx[0]->tweak1_table = tweak1_table; if (ALGO == Algorithm::CN_GR_0) cn_gr0_quad_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_1) cn_gr1_quad_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_2) cn_gr2_quad_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_3) cn_gr3_quad_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_4) cn_gr4_quad_mainloop_asm(ctx); if (ALGO == Algorithm::CN_GR_5) cn_gr5_quad_mainloop_asm(ctx); # ifdef XMRIG_VAES if (!props.isHeavy() && cn_vaes_enabled) { cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); cn_implode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem()); } else # endif { cn_implode_scratchpad(ctx[0]); cn_implode_scratchpad(ctx[1]); cn_implode_scratchpad(ctx[2]); cn_implode_scratchpad(ctx[3]); } keccakf(reinterpret_cast(ctx[0]->state), 24); keccakf(reinterpret_cast(ctx[1]->state), 24); keccakf(reinterpret_cast(ctx[2]->state), 24); keccakf(reinterpret_cast(ctx[3]->state), 24); extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output); extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32); extra_hashes[ctx[2]->state[0] & 3](ctx[2]->state, 200, output + 64); extra_hashes[ctx[3]->state[0] & 3](ctx[3]->state, 200, output + 96); } #endif #define CN_STEP1(a, b0, b1, c, l, ptr, idx, conc_var) \ ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \ c = _mm_load_si128(ptr); \ if (ALGO == Algorithm::CN_CCX) { \ cryptonight_conceal_tweak(c, conc_var); \ } #define CN_STEP2(a, b0, b1, c, l, ptr, idx) \ if (IS_CN_HEAVY_TUBE) { \ c = aes_round_tweak_div(c, a); \ } \ else if (SOFT_AES) { \ c = soft_aesenc(&c, a, (const uint32_t*)saes_table); \ } else { \ c = _mm_aesenc_si128(c, a); \ } \ \ if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) { \ cryptonight_monero_tweak((uint64_t*)ptr, l, idx & MASK, a, b0, b1, c); \ } else { \ _mm_store_si128(ptr, _mm_xor_si128(b0, c)); \ } #define CN_STEP3(part, a, b0, b1, c, l, ptr, idx) \ idx = _mm_cvtsi128_si64(c); \ ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \ uint64_t cl##part = ((uint64_t*)ptr)[0]; \ uint64_t ch##part = ((uint64_t*)ptr)[1]; #define CN_STEP4(part, a, b0, b1, c, l, mc, ptr, idx) \ uint64_t al##part, ah##part; \ if (BASE == Algorithm::CN_2) { \ if (props.isR()) { \ al##part = _mm_cvtsi128_si64(a); \ ah##part = _mm_cvtsi128_si64(_mm_srli_si128(a, 8)); \ VARIANT4_RANDOM_MATH(part, al##part, ah##part, cl##part, b0, b1); \ if (ALGO == Algorithm::CN_R) { \ al##part ^= r##part[2] | ((uint64_t)(r##part[3]) << 32); \ ah##part ^= r##part[0] | ((uint64_t)(r##part[1]) << 32); \ } \ } else { \ VARIANT2_INTEGER_MATH(part, cl##part, c); \ } \ } \ lo = __umul128(idx, cl##part, &hi); \ if (BASE == Algorithm::CN_2) { \ if (ALGO == Algorithm::CN_R) { \ VARIANT2_SHUFFLE(l, idx & MASK, a, b0, b1, c, 0); \ } else { \ VARIANT2_SHUFFLE2(l, idx & MASK, a, b0, b1, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0)); \ } \ } \ if (ALGO == Algorithm::CN_R) { \ a = _mm_set_epi64x(ah##part, al##part); \ } \ a = _mm_add_epi64(a, _mm_set_epi64x(lo, hi)); \ \ if (BASE == Algorithm::CN_1) { \ _mm_store_si128(ptr, _mm_xor_si128(a, mc)); \ \ if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { \ ((uint64_t*)ptr)[1] ^= ((uint64_t*)ptr)[0]; \ } \ } else { \ _mm_store_si128(ptr, a); \ } \ \ a = _mm_xor_si128(a, _mm_set_epi64x(ch##part, cl##part)); \ idx = _mm_cvtsi128_si64(a); \ if (props.isHeavy()) { \ int64_t n = ((int64_t*)&l[idx & MASK])[0]; \ int32_t d = ((int32_t*)&l[idx & MASK])[2]; \ int64_t q = n / (d | 0x5); \ ((int64_t*)&l[idx & MASK])[0] = n ^ q; \ if (IS_CN_HEAVY_XHV) { \ d = ~d; \ } \ \ idx = d ^ q; \ } \ if (BASE == Algorithm::CN_2) { \ b1 = b0; \ } \ b0 = c; #define CONST_INIT(ctx, n) \ __m128i mc##n; \ __m128i division_result_xmm_##n; \ __m128i sqrt_result_xmm_##n; \ if (BASE == Algorithm::CN_1) { \ mc##n = _mm_set_epi64x(*reinterpret_cast(input + n * size + 35) ^ \ *(reinterpret_cast((ctx)->state) + 24), 0); \ } \ if (BASE == Algorithm::CN_2) { \ division_result_xmm_##n = _mm_cvtsi64_si128(h##n[12]); \ sqrt_result_xmm_##n = _mm_cvtsi64_si128(h##n[13]); \ } \ __m128i ax##n = _mm_set_epi64x(h##n[1] ^ h##n[5], h##n[0] ^ h##n[4]); \ __m128i bx##n##0 = _mm_set_epi64x(h##n[3] ^ h##n[7], h##n[2] ^ h##n[6]); \ __m128i bx##n##1 = _mm_set_epi64x(h##n[9] ^ h##n[11], h##n[8] ^ h##n[10]); \ __m128i cx##n = _mm_setzero_si128(); \ __m128 conc_var##n; \ if (ALGO == Algorithm::CN_CCX) { \ conc_var##n = _mm_setzero_ps(); \ } \ VARIANT4_RANDOM_MATH_INIT(n); template inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; constexpr bool IS_CN_HEAVY_XHV = ALGO == Algorithm::CN_HEAVY_XHV; # else constexpr bool IS_CN_HEAVY_TUBE = false; constexpr bool IS_CN_HEAVY_XHV = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32 * 3); return; } for (size_t i = 0; i < 3; i++) { keccak(input + size * i, size, ctx[i]->state); if (props.half_mem()) { ctx[i]->first_half = true; } cn_explode_scratchpad(ctx[i]); } uint8_t* l0 = ctx[0]->memory; uint8_t* l1 = ctx[1]->memory; uint8_t* l2 = ctx[2]->memory; uint64_t* h0 = reinterpret_cast(ctx[0]->state); uint64_t* h1 = reinterpret_cast(ctx[1]->state); uint64_t* h2 = reinterpret_cast(ctx[2]->state); CONST_INIT(ctx[0], 0); CONST_INIT(ctx[1], 1); CONST_INIT(ctx[2], 2); VARIANT2_SET_ROUNDING_MODE(); if (ALGO == Algorithm::CN_CCX) { RESTORE_ROUNDING_MODE(); } uint64_t idx0, idx1, idx2; idx0 = _mm_cvtsi128_si64(ax0); idx1 = _mm_cvtsi128_si64(ax1); idx2 = _mm_cvtsi128_si64(ax2); for (size_t i = 0; i < props.iterations(); i++) { uint64_t hi, lo; __m128i *ptr0, *ptr1, *ptr2; CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0, conc_var0); CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1, conc_var1); CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2, conc_var2); CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0); CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1); CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2); CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0); CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1); CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2); CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0); CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1); CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2); } for (size_t i = 0; i < 3; i++) { cn_implode_scratchpad(ctx[i]); keccakf(reinterpret_cast(ctx[i]->state), 24); extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i); } } template inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { # ifdef XMRIG_FEATURE_ASM if (!SOFT_AES) { switch (ALGO) { case Algorithm::CN_GR_0: case Algorithm::CN_GR_1: case Algorithm::CN_GR_2: case Algorithm::CN_GR_3: case Algorithm::CN_GR_4: case Algorithm::CN_GR_5: if (cn_sse41_enabled) { cryptonight_quad_hash_gr_sse41(input, size, output, ctx, height); return; } break; default: break; } } # endif constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; constexpr bool IS_CN_HEAVY_XHV = ALGO == Algorithm::CN_HEAVY_XHV; # else constexpr bool IS_CN_HEAVY_TUBE = false; constexpr bool IS_CN_HEAVY_XHV = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32 * 4); return; } for (size_t i = 0; i < 4; i++) { keccak(input + size * i, size, ctx[i]->state); if (props.half_mem()) { ctx[i]->first_half = true; } } # ifdef XMRIG_VAES if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) { cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); cn_explode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem()); } else # endif { cn_explode_scratchpad(ctx[0]); cn_explode_scratchpad(ctx[1]); cn_explode_scratchpad(ctx[2]); cn_explode_scratchpad(ctx[3]); } uint8_t* l0 = ctx[0]->memory; uint8_t* l1 = ctx[1]->memory; uint8_t* l2 = ctx[2]->memory; uint8_t* l3 = ctx[3]->memory; uint64_t* h0 = reinterpret_cast(ctx[0]->state); uint64_t* h1 = reinterpret_cast(ctx[1]->state); uint64_t* h2 = reinterpret_cast(ctx[2]->state); uint64_t* h3 = reinterpret_cast(ctx[3]->state); CONST_INIT(ctx[0], 0); CONST_INIT(ctx[1], 1); CONST_INIT(ctx[2], 2); CONST_INIT(ctx[3], 3); VARIANT2_SET_ROUNDING_MODE(); if (ALGO == Algorithm::CN_CCX) { RESTORE_ROUNDING_MODE(); } uint64_t idx0, idx1, idx2, idx3; idx0 = _mm_cvtsi128_si64(ax0); idx1 = _mm_cvtsi128_si64(ax1); idx2 = _mm_cvtsi128_si64(ax2); idx3 = _mm_cvtsi128_si64(ax3); for (size_t i = 0; i < props.iterations(); i++) { uint64_t hi, lo; __m128i *ptr0, *ptr1, *ptr2, *ptr3; CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0, conc_var0); CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1, conc_var1); CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2, conc_var2); CN_STEP1(ax3, bx30, bx31, cx3, l3, ptr3, idx3, conc_var3); CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0); CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1); CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2); CN_STEP2(ax3, bx30, bx31, cx3, l3, ptr3, idx3); CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0); CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1); CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2); CN_STEP3(3, ax3, bx30, bx31, cx3, l3, ptr3, idx3); CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0); CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1); CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2); CN_STEP4(3, ax3, bx30, bx31, cx3, l3, mc3, ptr3, idx3); } # ifdef XMRIG_VAES if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) { cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem()); cn_implode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem()); } else # endif { cn_implode_scratchpad(ctx[0]); cn_implode_scratchpad(ctx[1]); cn_implode_scratchpad(ctx[2]); cn_implode_scratchpad(ctx[3]); } for (size_t i = 0; i < 4; i++) { keccakf(reinterpret_cast(ctx[i]->state), 24); extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i); } } template inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height) { constexpr CnAlgo props; constexpr size_t MASK = props.mask(); constexpr Algorithm::Id BASE = props.base(); # ifdef XMRIG_ALGO_CN_HEAVY constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE; constexpr bool IS_CN_HEAVY_XHV = ALGO == Algorithm::CN_HEAVY_XHV; # else constexpr bool IS_CN_HEAVY_TUBE = false; constexpr bool IS_CN_HEAVY_XHV = false; # endif if (BASE == Algorithm::CN_1 && size < 43) { memset(output, 0, 32 * 5); return; } for (size_t i = 0; i < 5; i++) { keccak(input + size * i, size, ctx[i]->state); if (props.half_mem()) { ctx[i]->first_half = true; } cn_explode_scratchpad(ctx[i]); } uint8_t* l0 = ctx[0]->memory; uint8_t* l1 = ctx[1]->memory; uint8_t* l2 = ctx[2]->memory; uint8_t* l3 = ctx[3]->memory; uint8_t* l4 = ctx[4]->memory; uint64_t* h0 = reinterpret_cast(ctx[0]->state); uint64_t* h1 = reinterpret_cast(ctx[1]->state); uint64_t* h2 = reinterpret_cast(ctx[2]->state); uint64_t* h3 = reinterpret_cast(ctx[3]->state); uint64_t* h4 = reinterpret_cast(ctx[4]->state); CONST_INIT(ctx[0], 0); CONST_INIT(ctx[1], 1); CONST_INIT(ctx[2], 2); CONST_INIT(ctx[3], 3); CONST_INIT(ctx[4], 4); VARIANT2_SET_ROUNDING_MODE(); if (ALGO == Algorithm::CN_CCX) { RESTORE_ROUNDING_MODE(); } uint64_t idx0, idx1, idx2, idx3, idx4; idx0 = _mm_cvtsi128_si64(ax0); idx1 = _mm_cvtsi128_si64(ax1); idx2 = _mm_cvtsi128_si64(ax2); idx3 = _mm_cvtsi128_si64(ax3); idx4 = _mm_cvtsi128_si64(ax4); for (size_t i = 0; i < props.iterations(); i++) { uint64_t hi, lo; __m128i *ptr0, *ptr1, *ptr2, *ptr3, *ptr4; CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0, conc_var0); CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1, conc_var1); CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2, conc_var2); CN_STEP1(ax3, bx30, bx31, cx3, l3, ptr3, idx3, conc_var3); CN_STEP1(ax4, bx40, bx41, cx4, l4, ptr4, idx4, conc_var4); CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0); CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1); CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2); CN_STEP2(ax3, bx30, bx31, cx3, l3, ptr3, idx3); CN_STEP2(ax4, bx40, bx41, cx4, l4, ptr4, idx4); CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0); CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1); CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2); CN_STEP3(3, ax3, bx30, bx31, cx3, l3, ptr3, idx3); CN_STEP3(4, ax4, bx40, bx41, cx4, l4, ptr4, idx4); CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0); CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1); CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2); CN_STEP4(3, ax3, bx30, bx31, cx3, l3, mc3, ptr3, idx3); CN_STEP4(4, ax4, bx40, bx41, cx4, l4, mc4, ptr4, idx4); } for (size_t i = 0; i < 5; i++) { cn_implode_scratchpad(ctx[i]); keccakf(reinterpret_cast(ctx[i]->state), 24); extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i); } } } /* namespace xmrig */ #endif /* XMRIG_CRYPTONIGHT_X86_H */