/* ------------------------------------------------------------------------- * Works when compiled for either 32-bit or 64-bit targets, optimized for * 64 bit. * * Canonical implementation of Init/Update/Finalize for SHA-3 byte input. * * SHA3-256, SHA3-384, SHA-512 are implemented. SHA-224 can easily be added. * * Based on code from http://keccak.noekeon.org/ . * * I place the code that I wrote into public domain, free to use. * * I would appreciate if you give credits to this work if you used it to * write or test * your code. * * Aug 2015. Andrey Jivsov. crypto@brainhub.org * ---------------------------------------------------------------------- */ #include #include #include #include "sha3.h" #include "base/crypto/keccak.h" #define SHA3_ASSERT( x ) #if defined(_MSC_VER) #define SHA3_TRACE( format, ...) #define SHA3_TRACE_BUF( format, buf, l, ...) #else #define SHA3_TRACE(format, args...) #define SHA3_TRACE_BUF(format, buf, l, args...) #endif /* * This flag is used to configure "pure" Keccak, as opposed to NIST SHA3. */ #define SHA3_USE_KECCAK_FLAG 0x80000000 #define SHA3_CW(x) ((x) & (~SHA3_USE_KECCAK_FLAG)) #if defined(_MSC_VER) #define SHA3_CONST(x) x #else #define SHA3_CONST(x) x##L #endif #define KECCAK_ROUNDS 24 /* *************************** Public Inteface ************************ */ /* For Init or Reset call these: */ sha3_return_t sha3_Init(void *priv, unsigned bitSize) { sha3_context *ctx = (sha3_context *) priv; if( bitSize != 256 && bitSize != 384 && bitSize != 512 ) return SHA3_RETURN_BAD_PARAMS; memset(ctx, 0, sizeof(*ctx)); ctx->capacityWords = 2 * bitSize / (8 * sizeof(uint64_t)); return SHA3_RETURN_OK; } void sha3_Init256(void *priv) { sha3_Init(priv, 256); } void sha3_Init384(void *priv) { sha3_Init(priv, 384); } void sha3_Init512(void *priv) { sha3_Init(priv, 512); } SHA3_FLAGS sha3_SetFlags(void *priv, SHA3_FLAGS flags) { sha3_context *ctx = (sha3_context *) priv; flags = static_cast(static_cast(flags) & SHA3_FLAGS_KECCAK); ctx->capacityWords |= (flags == SHA3_FLAGS_KECCAK ? SHA3_USE_KECCAK_FLAG : 0); return flags; } void sha3_Update(void *priv, void const *bufIn, size_t len) { sha3_context *ctx = (sha3_context *) priv; /* 0...7 -- how much is needed to have a word */ unsigned old_tail = (8 - ctx->byteIndex) & 7; size_t words; unsigned tail; size_t i; const uint8_t *buf = reinterpret_cast(bufIn); SHA3_TRACE_BUF("called to update with:", buf, len); SHA3_ASSERT(ctx->byteIndex < 8); SHA3_ASSERT(ctx->wordIndex < sizeof(ctx->s) / sizeof(ctx->s[0])); if(len < old_tail) { /* have no complete word or haven't started * the word yet */ SHA3_TRACE("because %d<%d, store it and return", (unsigned)len, (unsigned)old_tail); /* endian-independent code follows: */ while (len--) ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8); SHA3_ASSERT(ctx->byteIndex < 8); return; } if(old_tail) { /* will have one word to process */ SHA3_TRACE("completing one word with %d bytes", (unsigned)old_tail); /* endian-independent code follows: */ len -= old_tail; while (old_tail--) ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8); /* now ready to add saved to the sponge */ ctx->s[ctx->wordIndex] ^= ctx->saved; SHA3_ASSERT(ctx->byteIndex == 8); ctx->byteIndex = 0; ctx->saved = 0; if(++ctx->wordIndex == (SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords))) { xmrig::keccakf(ctx->s, KECCAK_ROUNDS); ctx->wordIndex = 0; } } /* now work in full words directly from input */ SHA3_ASSERT(ctx->byteIndex == 0); words = len / sizeof(uint64_t); tail = len - words * sizeof(uint64_t); SHA3_TRACE("have %d full words to process", (unsigned)words); for(i = 0; i < words; i++, buf += sizeof(uint64_t)) { const uint64_t t = (uint64_t) (buf[0]) | ((uint64_t) (buf[1]) << 8 * 1) | ((uint64_t) (buf[2]) << 8 * 2) | ((uint64_t) (buf[3]) << 8 * 3) | ((uint64_t) (buf[4]) << 8 * 4) | ((uint64_t) (buf[5]) << 8 * 5) | ((uint64_t) (buf[6]) << 8 * 6) | ((uint64_t) (buf[7]) << 8 * 7); #if defined(__x86_64__ ) || defined(__i386__) SHA3_ASSERT(memcmp(&t, buf, 8) == 0); #endif ctx->s[ctx->wordIndex] ^= t; if(++ctx->wordIndex == (SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords))) { xmrig::keccakf(ctx->s, KECCAK_ROUNDS); ctx->wordIndex = 0; } } SHA3_TRACE("have %d bytes left to process, save them", (unsigned)tail); /* finally, save the partial word */ SHA3_ASSERT(ctx->byteIndex == 0 && tail < 8); while (tail--) { SHA3_TRACE("Store byte %02x '%c'", *buf, *buf); ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8); } SHA3_ASSERT(ctx->byteIndex < 8); SHA3_TRACE("Have saved=0x%016" PRIx64 " at the end", ctx->saved); } /* This is simply the 'update' with the padding block. * The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80 * bytes are always present, but they can be the same byte. */ void const * sha3_Finalize(void *priv) { sha3_context *ctx = (sha3_context *) priv; SHA3_TRACE("called with %d bytes in the buffer", ctx->byteIndex); /* Append 2-bit suffix 01, per SHA-3 spec. Instead of 1 for padding we * use 1<<2 below. The 0x02 below corresponds to the suffix 01. * Overall, we feed 0, then 1, and finally 1 to start padding. Without * M || 01, we would simply use 1 to start padding. */ uint64_t t; if( ctx->capacityWords & SHA3_USE_KECCAK_FLAG ) { /* Keccak version */ t = (uint64_t)(((uint64_t) 1) << (ctx->byteIndex * 8)); } else { /* SHA3 version */ t = (uint64_t)(((uint64_t)(0x02 | (1 << 2))) << ((ctx->byteIndex) * 8)); } ctx->s[ctx->wordIndex] ^= ctx->saved ^ t; ctx->s[SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords) - 1] ^= SHA3_CONST(0x8000000000000000UL); xmrig::keccakf(ctx->s, KECCAK_ROUNDS); /* Return first bytes of the ctx->s. This conversion is not needed for * little-endian platforms e.g. wrap with #if !defined(__BYTE_ORDER__) * || !defined(__ORDER_LITTLE_ENDIAN__) || __BYTE_ORDER__!=__ORDER_LITTLE_ENDIAN__ * ... the conversion below ... * #endif */ { unsigned i; for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) { const unsigned t1 = (uint32_t) ctx->s[i]; const unsigned t2 = (uint32_t) ((ctx->s[i] >> 16) >> 16); ctx->sb[i * 8 + 0] = (uint8_t) (t1); ctx->sb[i * 8 + 1] = (uint8_t) (t1 >> 8); ctx->sb[i * 8 + 2] = (uint8_t) (t1 >> 16); ctx->sb[i * 8 + 3] = (uint8_t) (t1 >> 24); ctx->sb[i * 8 + 4] = (uint8_t) (t2); ctx->sb[i * 8 + 5] = (uint8_t) (t2 >> 8); ctx->sb[i * 8 + 6] = (uint8_t) (t2 >> 16); ctx->sb[i * 8 + 7] = (uint8_t) (t2 >> 24); } } SHA3_TRACE_BUF("Hash: (first 32 bytes)", ctx->sb, 256 / 8); return (ctx->sb); } extern "C" sha3_return_t sha3_HashBuffer( unsigned bitSize, enum SHA3_FLAGS flags, const void *in, unsigned inBytes, void *out, unsigned outBytes ) { sha3_return_t err; sha3_context c; err = sha3_Init(&c, bitSize); if( err != SHA3_RETURN_OK ) return err; if( sha3_SetFlags(&c, flags) != flags ) { return SHA3_RETURN_BAD_PARAMS; } sha3_Update(&c, in, inBytes); const void *h = sha3_Finalize(&c); if(outBytes > bitSize/8) outBytes = bitSize/8; memcpy(out, h, outBytes); return SHA3_RETURN_OK; }