REDACTED-rig/src/backend/cuda/wrappers/CudaLib.cpp
2020-04-29 14:17:33 +07:00

378 lines
12 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdexcept>
#include <uv.h>
#include "backend/cuda/wrappers/CudaLib.h"
#include "base/io/Env.h"
#include "crypto/rx/RxAlgo.h"
namespace xmrig {
enum Version : uint32_t
{
ApiVersion,
DriverVersion,
RuntimeVersion
};
static uv_lib_t cudaLib;
static const char *kAlloc = "alloc";
static const char *kAstroBWTHash = "astroBWTHash";
static const char *kAstroBWTPrepare = "astroBWTPrepare";
static const char *kCnHash = "cnHash";
static const char *kDeviceCount = "deviceCount";
static const char *kDeviceInfo = "deviceInfo";
static const char *kDeviceInfo_v2 = "deviceInfo_v2";
static const char *kDeviceInit = "deviceInit";
static const char *kDeviceInt = "deviceInt";
static const char *kDeviceName = "deviceName";
static const char *kDeviceUint = "deviceUint";
static const char *kDeviceUlong = "deviceUlong";
static const char *kInit = "init";
static const char *kLastError = "lastError";
static const char *kPluginVersion = "pluginVersion";
static const char *kRelease = "release";
static const char *kRxHash = "rxHash";
static const char *kRxPrepare = "rxPrepare";
static const char *kSetJob = "setJob";
static const char *kSetJob_v2 = "setJob_v2";
static const char *kSymbolNotFound = "symbol not found";
static const char *kVersion = "version";
using alloc_t = nvid_ctx * (*)(uint32_t, int32_t, int32_t);
using astroBWTHash_t = bool (*)(nvid_ctx *, uint32_t, uint64_t, uint32_t *, uint32_t *);
using astroBWTPrepare_t = bool (*)(nvid_ctx *, uint32_t);
using cnHash_t = bool (*)(nvid_ctx *, uint32_t, uint64_t, uint64_t, uint32_t *, uint32_t *);
using deviceCount_t = uint32_t (*)();
using deviceInfo_t = int32_t (*)(nvid_ctx *, int32_t, int32_t, int32_t, int32_t);
using deviceInfo_v2_t = bool (*)(nvid_ctx *, int32_t, int32_t, const char *, int32_t);
using deviceInit_t = bool (*)(nvid_ctx *);
using deviceInt_t = int32_t (*)(nvid_ctx *, CudaLib::DeviceProperty);
using deviceName_t = const char * (*)(nvid_ctx *);
using deviceUint_t = uint32_t (*)(nvid_ctx *, CudaLib::DeviceProperty);
using deviceUlong_t = uint64_t (*)(nvid_ctx *, CudaLib::DeviceProperty);
using init_t = void (*)();
using lastError_t = const char * (*)(nvid_ctx *);
using pluginVersion_t = const char * (*)();
using release_t = void (*)(nvid_ctx *);
using rxHash_t = bool (*)(nvid_ctx *, uint32_t, uint64_t, uint32_t *, uint32_t *);
using rxPrepare_t = bool (*)(nvid_ctx *, const void *, size_t, bool, uint32_t);
using setJob_t = bool (*)(nvid_ctx *, const void *, size_t, int32_t);
using setJob_v2_t = bool (*)(nvid_ctx *, const void *, size_t, const char *);
using version_t = uint32_t (*)(Version);
static alloc_t pAlloc = nullptr;
static astroBWTHash_t pAstroBWTHash = nullptr;
static astroBWTPrepare_t pAstroBWTPrepare = nullptr;
static cnHash_t pCnHash = nullptr;
static deviceCount_t pDeviceCount = nullptr;
static deviceInfo_t pDeviceInfo = nullptr;
static deviceInfo_v2_t pDeviceInfo_v2 = nullptr;
static deviceInit_t pDeviceInit = nullptr;
static deviceInt_t pDeviceInt = nullptr;
static deviceName_t pDeviceName = nullptr;
static deviceUint_t pDeviceUint = nullptr;
static deviceUlong_t pDeviceUlong = nullptr;
static init_t pInit = nullptr;
static lastError_t pLastError = nullptr;
static pluginVersion_t pPluginVersion = nullptr;
static release_t pRelease = nullptr;
static rxHash_t pRxHash = nullptr;
static rxPrepare_t pRxPrepare = nullptr;
static setJob_t pSetJob = nullptr;
static setJob_v2_t pSetJob_v2 = nullptr;
static version_t pVersion = nullptr;
#define DLSYM(x) if (uv_dlsym(&cudaLib, k##x, reinterpret_cast<void**>(&p##x)) == -1) { throw std::runtime_error(kSymbolNotFound); }
bool CudaLib::m_initialized = false;
bool CudaLib::m_ready = false;
String CudaLib::m_loader;
} // namespace xmrig
bool xmrig::CudaLib::init(const char *fileName)
{
if (!m_initialized) {
m_loader = fileName == nullptr ? defaultLoader() : Env::expand(fileName);
m_ready = uv_dlopen(m_loader, &cudaLib) == 0 && load();
m_initialized = true;
}
return m_ready;
}
const char *xmrig::CudaLib::lastError() noexcept
{
return uv_dlerror(&cudaLib);
}
void xmrig::CudaLib::close()
{
uv_dlclose(&cudaLib);
}
bool xmrig::CudaLib::astroBWTHash(nvid_ctx *ctx, uint32_t startNonce, uint64_t target, uint32_t *rescount, uint32_t *resnonce) noexcept
{
return pAstroBWTHash(ctx, startNonce, target, rescount, resnonce);
}
bool xmrig::CudaLib::astroBWTPrepare(nvid_ctx *ctx, uint32_t batchSize) noexcept
{
return pAstroBWTPrepare(ctx, batchSize);
}
bool xmrig::CudaLib::cnHash(nvid_ctx *ctx, uint32_t startNonce, uint64_t height, uint64_t target, uint32_t *rescount, uint32_t *resnonce)
{
return pCnHash(ctx, startNonce, height, target, rescount, resnonce);
}
bool xmrig::CudaLib::deviceInfo(nvid_ctx *ctx, int32_t blocks, int32_t threads, const Algorithm &algorithm, int32_t dataset_host) noexcept
{
const Algorithm algo = RxAlgo::id(algorithm);
if (pDeviceInfo_v2) {
return pDeviceInfo_v2(ctx, blocks, threads, algo.isValid() ? algo.shortName() : nullptr, dataset_host);
}
return pDeviceInfo(ctx, blocks, threads, algo, dataset_host) == 0;
}
bool xmrig::CudaLib::deviceInit(nvid_ctx *ctx) noexcept
{
return pDeviceInit(ctx);
}
bool xmrig::CudaLib::rxHash(nvid_ctx *ctx, uint32_t startNonce, uint64_t target, uint32_t *rescount, uint32_t *resnonce) noexcept
{
return pRxHash(ctx, startNonce, target, rescount, resnonce);
}
bool xmrig::CudaLib::rxPrepare(nvid_ctx *ctx, const void *dataset, size_t datasetSize, bool dataset_host, uint32_t batchSize) noexcept
{
return pRxPrepare(ctx, dataset, datasetSize, dataset_host, batchSize);
}
bool xmrig::CudaLib::setJob(nvid_ctx *ctx, const void *data, size_t size, const Algorithm &algorithm) noexcept
{
const Algorithm algo = RxAlgo::id(algorithm);
if (pSetJob_v2) {
return pSetJob_v2(ctx, data, size, algo.shortName());
}
return pSetJob(ctx, data, size, algo);
}
const char *xmrig::CudaLib::deviceName(nvid_ctx *ctx) noexcept
{
return pDeviceName(ctx);
}
const char *xmrig::CudaLib::lastError(nvid_ctx *ctx) noexcept
{
return pLastError(ctx);
}
const char *xmrig::CudaLib::pluginVersion() noexcept
{
return pPluginVersion();
}
int32_t xmrig::CudaLib::deviceInt(nvid_ctx *ctx, DeviceProperty property) noexcept
{
return pDeviceInt(ctx, property);
}
nvid_ctx *xmrig::CudaLib::alloc(uint32_t id, int32_t bfactor, int32_t bsleep) noexcept
{
return pAlloc(id, bfactor, bsleep);
}
std::string xmrig::CudaLib::version(uint32_t version)
{
return std::to_string(version / 1000) + "." + std::to_string((version % 1000) / 10);
}
std::vector<xmrig::CudaDevice> xmrig::CudaLib::devices(int32_t bfactor, int32_t bsleep, const std::vector<uint32_t> &hints) noexcept
{
const uint32_t count = deviceCount();
if (!count) {
return {};
}
std::vector<CudaDevice> out;
out.reserve(count);
if (hints.empty()) {
for (uint32_t i = 0; i < count; ++i) {
CudaDevice device(i, bfactor, bsleep);
if (device.isValid()) {
out.emplace_back(std::move(device));
}
}
}
else {
for (const uint32_t i : hints) {
if (i >= count) {
continue;
}
CudaDevice device(i, bfactor, bsleep);
if (device.isValid()) {
out.emplace_back(std::move(device));
}
}
}
return out;
}
uint32_t xmrig::CudaLib::deviceCount() noexcept
{
return pDeviceCount();
}
uint32_t xmrig::CudaLib::deviceUint(nvid_ctx *ctx, DeviceProperty property) noexcept
{
return pDeviceUint(ctx, property);
}
uint32_t xmrig::CudaLib::driverVersion() noexcept
{
return pVersion(DriverVersion);
}
uint32_t xmrig::CudaLib::runtimeVersion() noexcept
{
return pVersion(RuntimeVersion);
}
uint64_t xmrig::CudaLib::deviceUlong(nvid_ctx *ctx, DeviceProperty property) noexcept
{
return pDeviceUlong(ctx, property);
}
void xmrig::CudaLib::release(nvid_ctx *ctx) noexcept
{
pRelease(ctx);
}
bool xmrig::CudaLib::load()
{
if (uv_dlsym(&cudaLib, kVersion, reinterpret_cast<void**>(&pVersion)) == -1) {
return false;
}
if (pVersion(ApiVersion) != 3u) {
return false;
}
uv_dlsym(&cudaLib, kDeviceInfo_v2, reinterpret_cast<void**>(&pDeviceInfo_v2));
uv_dlsym(&cudaLib, kSetJob_v2, reinterpret_cast<void**>(&pSetJob_v2));
try {
DLSYM(Alloc);
DLSYM(CnHash);
DLSYM(DeviceCount);
DLSYM(DeviceInit);
DLSYM(DeviceInt);
DLSYM(DeviceName);
DLSYM(DeviceUint);
DLSYM(DeviceUlong);
DLSYM(Init);
DLSYM(LastError);
DLSYM(PluginVersion);
DLSYM(Release);
DLSYM(RxHash);
DLSYM(RxPrepare);
DLSYM(AstroBWTHash);
DLSYM(AstroBWTPrepare);
DLSYM(Version);
if (!pDeviceInfo_v2) {
DLSYM(DeviceInfo);
}
if (!pSetJob_v2) {
DLSYM(SetJob);
}
} catch (std::exception &ex) {
return false;
}
pInit();
return true;
}
xmrig::String xmrig::CudaLib::defaultLoader()
{
# if defined(__APPLE__)
return "/System/Library/Frameworks/OpenCL.framework/OpenCL"; // FIXME
# elif defined(_WIN32)
return "xmrig-cuda.dll";
# else
return "libxmrig-cuda.so";
# endif
}