1096 lines
40 KiB
C++
1096 lines
40 KiB
C++
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2016 Imran Yusuff <https://github.com/imranyusuff>
|
|
* Copyright 2016-2017 XMRig <support@xmrig.com>
|
|
* Copyright 2018 Sebastian Stolzenberg <https://github.com/sebastianstolzenberg>
|
|
* Copyright 2018 BenDroid <ben@graef.in>
|
|
*
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
#ifndef __CRYPTONIGHT_ARM_H__
|
|
#define __CRYPTONIGHT_ARM_H__
|
|
|
|
|
|
#if defined(XMRIG_ARM) && !defined(__clang__)
|
|
# include "aligned_malloc.h"
|
|
#else
|
|
# include <mm_malloc.h>
|
|
#endif
|
|
|
|
|
|
#include "crypto/CryptoNight.h"
|
|
#include "crypto/soft_aes.h"
|
|
|
|
|
|
extern "C"
|
|
{
|
|
#include "crypto/c_keccak.h"
|
|
#include "crypto/c_groestl.h"
|
|
#include "crypto/c_blake256.h"
|
|
#include "crypto/c_jh.h"
|
|
#include "crypto/c_skein.h"
|
|
}
|
|
|
|
|
|
static inline void do_blake_hash(const void* input, size_t len, char* output)
|
|
{
|
|
blake256_hash(reinterpret_cast<uint8_t*>(output), static_cast<const uint8_t*>(input), len);
|
|
}
|
|
|
|
|
|
static inline void do_groestl_hash(const void* input, size_t len, char* output)
|
|
{
|
|
groestl(static_cast<const uint8_t*>(input), len * 8, reinterpret_cast<uint8_t*>(output));
|
|
}
|
|
|
|
|
|
static inline void do_jh_hash(const void* input, size_t len, char* output)
|
|
{
|
|
jh_hash(32 * 8, static_cast<const uint8_t*>(input), 8 * len, reinterpret_cast<uint8_t*>(output));
|
|
}
|
|
|
|
|
|
static inline void do_skein_hash(const void* input, size_t len, char* output)
|
|
{
|
|
xmr_skein(static_cast<const uint8_t*>(input), reinterpret_cast<uint8_t*>(output));
|
|
}
|
|
|
|
|
|
void
|
|
(* const extra_hashes[4])(const void*, size_t, char*) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
|
|
|
|
|
|
static inline __attribute__((always_inline)) __m128i _mm_set_epi64x(const uint64_t a, const uint64_t b)
|
|
{
|
|
return vcombine_u64(vcreate_u64(b), vcreate_u64(a));
|
|
}
|
|
|
|
|
|
/* this one was not implemented yet so here it is */
|
|
static inline __attribute__((always_inline)) uint64_t _mm_cvtsi128_si64(__m128i a)
|
|
{
|
|
return vgetq_lane_u64(a, 0);
|
|
}
|
|
|
|
|
|
#define EXTRACT64(X) _mm_cvtsi128_si64(X)
|
|
|
|
|
|
#if defined(XMRIG_ARMv8)
|
|
static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi)
|
|
{
|
|
unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
|
|
*hi = r >> 64;
|
|
return (uint64_t) r;
|
|
}
|
|
#else
|
|
|
|
static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t* product_hi)
|
|
{
|
|
// multiplier = ab = a * 2^32 + b
|
|
// multiplicand = cd = c * 2^32 + d
|
|
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
|
|
uint64_t a = multiplier >> 32;
|
|
uint64_t b = multiplier & 0xFFFFFFFF;
|
|
uint64_t c = multiplicand >> 32;
|
|
uint64_t d = multiplicand & 0xFFFFFFFF;
|
|
|
|
//uint64_t ac = a * c;
|
|
uint64_t ad = a * d;
|
|
//uint64_t bc = b * c;
|
|
uint64_t bd = b * d;
|
|
|
|
uint64_t adbc = ad + (b * c);
|
|
uint64_t adbc_carry = adbc < ad ? 1 : 0;
|
|
|
|
// multiplier * multiplicand = product_hi * 2^64 + product_lo
|
|
uint64_t product_lo = bd + (adbc << 32);
|
|
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
|
|
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
|
|
|
|
return product_lo;
|
|
}
|
|
|
|
#endif
|
|
|
|
|
|
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
|
|
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
|
|
static inline __m128i sl_xor(__m128i tmp1)
|
|
{
|
|
__m128i tmp4;
|
|
tmp4 = _mm_slli_si128(tmp1, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
tmp4 = _mm_slli_si128(tmp4, 0x04);
|
|
tmp1 = _mm_xor_si128(tmp1, tmp4);
|
|
return tmp1;
|
|
}
|
|
|
|
|
|
template<uint8_t rcon>
|
|
static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
// __m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon);
|
|
// xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
|
|
// *xout0 = sl_xor(*xout0);
|
|
// *xout0 = _mm_xor_si128(*xout0, xout1);
|
|
// xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
|
|
// xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
|
|
// *xout2 = sl_xor(*xout2);
|
|
// *xout2 = _mm_xor_si128(*xout2, xout1);
|
|
}
|
|
|
|
|
|
template<uint8_t rcon>
|
|
static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2)
|
|
{
|
|
__m128i xout1 = soft_aeskeygenassist<rcon>(*xout2);
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
|
|
*xout0 = sl_xor(*xout0);
|
|
*xout0 = _mm_xor_si128(*xout0, xout1);
|
|
xout1 = soft_aeskeygenassist<0x00>(*xout0);
|
|
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
|
|
*xout2 = sl_xor(*xout2);
|
|
*xout2 = _mm_xor_si128(*xout2, xout1);
|
|
}
|
|
|
|
|
|
template<bool SOFT_AES>
|
|
static inline void
|
|
aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5,
|
|
__m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
|
|
{
|
|
__m128i xout0 = _mm_load_si128(memory);
|
|
__m128i xout2 = _mm_load_si128(memory + 1);
|
|
*k0 = xout0;
|
|
*k1 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : soft_aes_genkey_sub<0x01>(&xout0, &xout2);
|
|
*k2 = xout0;
|
|
*k3 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : soft_aes_genkey_sub<0x02>(&xout0, &xout2);
|
|
*k4 = xout0;
|
|
*k5 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : soft_aes_genkey_sub<0x04>(&xout0, &xout2);
|
|
*k6 = xout0;
|
|
*k7 = xout2;
|
|
|
|
SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : soft_aes_genkey_sub<0x08>(&xout0, &xout2);
|
|
*k8 = xout0;
|
|
*k9 = xout2;
|
|
}
|
|
|
|
|
|
template<bool SOFT_AES>
|
|
static inline void
|
|
aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6,
|
|
__m128i* x7)
|
|
{
|
|
if (SOFT_AES) {
|
|
*x0 = soft_aesenc((uint32_t*)x0, key);
|
|
*x1 = soft_aesenc((uint32_t*)x1, key);
|
|
*x2 = soft_aesenc((uint32_t*)x2, key);
|
|
*x3 = soft_aesenc((uint32_t*)x3, key);
|
|
*x4 = soft_aesenc((uint32_t*)x4, key);
|
|
*x5 = soft_aesenc((uint32_t*)x5, key);
|
|
*x6 = soft_aesenc((uint32_t*)x6, key);
|
|
*x7 = soft_aesenc((uint32_t*)x7, key);
|
|
}
|
|
# ifndef XMRIG_ARMv7
|
|
else {
|
|
*x0 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x0), key));
|
|
*x1 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x1), key));
|
|
*x2 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x2), key));
|
|
*x3 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x3), key));
|
|
*x4 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x4), key));
|
|
*x5 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x5), key));
|
|
*x6 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x6), key));
|
|
*x7 = vaesmcq_u8(vaeseq_u8(*((uint8x16_t*) x7), key));
|
|
}
|
|
# endif
|
|
}
|
|
|
|
|
|
template<size_t MEM, bool SOFT_AES>
|
|
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
|
|
{
|
|
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
|
|
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
|
|
|
aes_genkey<SOFT_AES>(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
|
|
|
|
xin0 = _mm_load_si128(input + 4);
|
|
xin1 = _mm_load_si128(input + 5);
|
|
xin2 = _mm_load_si128(input + 6);
|
|
xin3 = _mm_load_si128(input + 7);
|
|
xin4 = _mm_load_si128(input + 8);
|
|
xin5 = _mm_load_si128(input + 9);
|
|
xin6 = _mm_load_si128(input + 10);
|
|
xin7 = _mm_load_si128(input + 11);
|
|
|
|
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
|
|
if (!SOFT_AES) {
|
|
aes_round<SOFT_AES>(_mm_setzero_si128(), &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
}
|
|
|
|
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
|
|
if (!SOFT_AES) {
|
|
xin0 ^= k9;
|
|
xin1 ^= k9;
|
|
xin2 ^= k9;
|
|
xin3 ^= k9;
|
|
xin4 ^= k9;
|
|
xin5 ^= k9;
|
|
xin6 ^= k9;
|
|
xin7 ^= k9;
|
|
} else {
|
|
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
|
|
}
|
|
|
|
_mm_store_si128(output + i + 0, xin0);
|
|
_mm_store_si128(output + i + 1, xin1);
|
|
_mm_store_si128(output + i + 2, xin2);
|
|
_mm_store_si128(output + i + 3, xin3);
|
|
_mm_store_si128(output + i + 4, xin4);
|
|
_mm_store_si128(output + i + 5, xin5);
|
|
_mm_store_si128(output + i + 6, xin6);
|
|
_mm_store_si128(output + i + 7, xin7);
|
|
}
|
|
}
|
|
|
|
|
|
template<size_t MEM, bool SOFT_AES>
|
|
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
|
|
{
|
|
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
|
|
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
|
|
|
aes_genkey<SOFT_AES>(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
|
|
|
|
xout0 = _mm_load_si128(output + 4);
|
|
xout1 = _mm_load_si128(output + 5);
|
|
xout2 = _mm_load_si128(output + 6);
|
|
xout3 = _mm_load_si128(output + 7);
|
|
xout4 = _mm_load_si128(output + 8);
|
|
xout5 = _mm_load_si128(output + 9);
|
|
xout6 = _mm_load_si128(output + 10);
|
|
xout7 = _mm_load_si128(output + 11);
|
|
|
|
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
|
|
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
|
|
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
|
|
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
|
|
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
|
|
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
|
|
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
|
|
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
|
|
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
|
|
|
|
if (!SOFT_AES) {
|
|
aes_round<SOFT_AES>(_mm_setzero_si128(), &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
}
|
|
|
|
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
|
|
if (!SOFT_AES) {
|
|
xout0 ^= k9;
|
|
xout1 ^= k9;
|
|
xout2 ^= k9;
|
|
xout3 ^= k9;
|
|
xout4 ^= k9;
|
|
xout5 ^= k9;
|
|
xout6 ^= k9;
|
|
xout7 ^= k9;
|
|
} else {
|
|
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
|
|
}
|
|
}
|
|
|
|
_mm_store_si128(output + 4, xout0);
|
|
_mm_store_si128(output + 5, xout1);
|
|
_mm_store_si128(output + 6, xout2);
|
|
_mm_store_si128(output + 7, xout3);
|
|
_mm_store_si128(output + 8, xout4);
|
|
_mm_store_si128(output + 9, xout5);
|
|
_mm_store_si128(output + 10, xout6);
|
|
_mm_store_si128(output + 11, xout7);
|
|
}
|
|
|
|
// n-Loop version. Seems to be little bit slower then the hardcoded one.
|
|
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES, size_t NUM_HASH_BLOCKS>
|
|
class CryptoNightMultiHash
|
|
{
|
|
public:
|
|
inline static void hash(const void* __restrict__ input,
|
|
size_t size,
|
|
void* __restrict__ output,
|
|
cryptonight_ctx* __restrict__ ctx)
|
|
{
|
|
const uint8_t* l[NUM_HASH_BLOCKS];
|
|
uint64_t* h[NUM_HASH_BLOCKS];
|
|
uint64_t al[NUM_HASH_BLOCKS];
|
|
uint64_t ah[NUM_HASH_BLOCKS];
|
|
__m128i bx[NUM_HASH_BLOCKS];
|
|
uint64_t idx[NUM_HASH_BLOCKS];
|
|
|
|
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
|
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size,
|
|
ctx->state[hashBlock], 200);
|
|
}
|
|
|
|
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
|
l[hashBlock] = ctx->memory + hashBlock * MEM;
|
|
h[hashBlock] = reinterpret_cast<uint64_t*>(ctx->state[hashBlock]);
|
|
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
|
|
|
|
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
|
|
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
|
|
bx[hashBlock] =
|
|
_mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
|
|
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
|
|
}
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
|
__m128i cx;
|
|
|
|
if (SOFT_AES) {
|
|
cx = soft_aesenc(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
|
|
} else {
|
|
cx = _mm_load_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK]);
|
|
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah[hashBlock], al[hashBlock]));
|
|
}
|
|
|
|
_mm_store_si128((__m128i*) &l[hashBlock][idx[hashBlock] & MASK],
|
|
_mm_xor_si128(bx[hashBlock], cx));
|
|
idx[hashBlock] = EXTRACT64(cx);
|
|
bx[hashBlock] = cx;
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
|
|
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
|
|
lo = __umul128(idx[hashBlock], cl, &hi);
|
|
|
|
al[hashBlock] += hi;
|
|
ah[hashBlock] += lo;
|
|
|
|
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
|
|
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
|
|
|
|
ah[hashBlock] ^= ch;
|
|
al[hashBlock] ^= cl;
|
|
idx[hashBlock] = al[hashBlock];
|
|
}
|
|
}
|
|
|
|
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
|
|
keccakf(h[hashBlock], 24);
|
|
extra_hashes[ctx->state[hashBlock][0] & 3](ctx->state[hashBlock], 200,
|
|
static_cast<char*>(output) + hashBlock * 32);
|
|
}
|
|
}
|
|
};
|
|
|
|
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
|
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 1>
|
|
{
|
|
public:
|
|
inline static void hash(const void* __restrict__ input,
|
|
size_t size,
|
|
void* __restrict__ output,
|
|
cryptonight_ctx* __restrict__ ctx)
|
|
{
|
|
const uint8_t* l;
|
|
uint64_t* h;
|
|
uint64_t al;
|
|
uint64_t ah;
|
|
__m128i bx;
|
|
uint64_t idx;
|
|
|
|
keccak(static_cast<const uint8_t*>(input), (int) size, ctx->state[0], 200);
|
|
|
|
l = ctx->memory;
|
|
h = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
|
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
|
|
|
|
al = h[0] ^ h[4];
|
|
ah = h[1] ^ h[5];
|
|
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
|
|
idx = h[0] ^ h[4];
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx;
|
|
|
|
if (SOFT_AES) {
|
|
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
|
|
}
|
|
else {
|
|
cx = _mm_load_si128((__m128i *) &l[idx & MASK]);
|
|
# ifndef XMRIG_ARMv7
|
|
cx = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
|
# endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
|
|
idx = EXTRACT64(cx);
|
|
bx = cx;
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l[idx & MASK])[0];
|
|
ch = ((uint64_t*) &l[idx & MASK])[1];
|
|
lo = __umul128(idx, cl, &hi);
|
|
|
|
al += hi;
|
|
ah += lo;
|
|
|
|
((uint64_t*) &l[idx & MASK])[0] = al;
|
|
((uint64_t*) &l[idx & MASK])[1] = ah;
|
|
|
|
ah ^= ch;
|
|
al ^= cl;
|
|
idx = al;
|
|
}
|
|
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
|
|
keccakf(h, 24);
|
|
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
|
}
|
|
};
|
|
|
|
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
|
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 2>
|
|
{
|
|
public:
|
|
inline static void hash(const void* __restrict__ input,
|
|
size_t size,
|
|
void* __restrict__ output,
|
|
cryptonight_ctx* __restrict__ ctx)
|
|
{
|
|
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
|
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
|
|
|
const uint8_t* l0 = ctx->memory;
|
|
const uint8_t* l1 = ctx->memory + MEM;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
|
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
|
|
|
uint64_t al0 = h0[0] ^h0[4];
|
|
uint64_t al1 = h1[0] ^h1[4];
|
|
uint64_t ah0 = h0[1] ^h0[5];
|
|
uint64_t ah1 = h1[1] ^h1[5];
|
|
|
|
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
|
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
|
|
|
uint64_t idx0 = h0[0] ^h0[4];
|
|
uint64_t idx1 = h1[0] ^h1[4];
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx0;
|
|
__m128i cx1;
|
|
|
|
if (SOFT_AES) {
|
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
|
|
} else {
|
|
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
|
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
|
|
|
# ifndef XMRIG_ARMv7
|
|
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
|
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
|
# endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
|
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
|
|
|
idx0 = EXTRACT64(cx0);
|
|
idx1 = EXTRACT64(cx1);
|
|
|
|
bx0 = cx0;
|
|
bx1 = cx1;
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
|
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
|
lo = __umul128(idx0, cl, &hi);
|
|
|
|
al0 += hi;
|
|
ah0 += lo;
|
|
|
|
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
|
|
|
ah0 ^= ch;
|
|
al0 ^= cl;
|
|
idx0 = al0;
|
|
|
|
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
|
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
|
lo = __umul128(idx1, cl, &hi);
|
|
|
|
al1 += hi;
|
|
ah1 += lo;
|
|
|
|
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
|
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
|
|
|
ah1 ^= ch;
|
|
al1 ^= cl;
|
|
idx1 = al1;
|
|
}
|
|
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
|
|
|
keccakf(h0, 24);
|
|
keccakf(h1, 24);
|
|
|
|
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
|
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
|
}
|
|
};
|
|
|
|
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
|
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 3>
|
|
{
|
|
public:
|
|
inline static void hash(const void* __restrict__ input,
|
|
size_t size,
|
|
void* __restrict__ output,
|
|
cryptonight_ctx* __restrict__ ctx)
|
|
{
|
|
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
|
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
|
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
|
|
|
|
const uint8_t* l0 = ctx->memory;
|
|
const uint8_t* l1 = ctx->memory + MEM;
|
|
const uint8_t* l2 = ctx->memory + 2 * MEM;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
|
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
|
|
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
|
|
|
|
uint64_t al0 = h0[0] ^h0[4];
|
|
uint64_t al1 = h1[0] ^h1[4];
|
|
uint64_t al2 = h2[0] ^h2[4];
|
|
uint64_t ah0 = h0[1] ^h0[5];
|
|
uint64_t ah1 = h1[1] ^h1[5];
|
|
uint64_t ah2 = h2[1] ^h2[5];
|
|
|
|
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
|
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
|
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
|
|
|
|
uint64_t idx0 = h0[0] ^h0[4];
|
|
uint64_t idx1 = h1[0] ^h1[4];
|
|
uint64_t idx2 = h2[0] ^h2[4];
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx0;
|
|
__m128i cx1;
|
|
__m128i cx2;
|
|
|
|
if (SOFT_AES) {
|
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
|
|
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
|
|
}
|
|
else {
|
|
cx0 = _mm_load_si128((__m128i *) &l0[idx0 & MASK]);
|
|
cx1 = _mm_load_si128((__m128i *) &l1[idx1 & MASK]);
|
|
cx2 = _mm_load_si128((__m128i *) &l2[idx2 & MASK]);
|
|
# ifndef XMRIG_ARMv7
|
|
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
|
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
|
cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2);
|
|
# endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
|
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
|
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
|
|
|
|
idx0 = EXTRACT64(cx0);
|
|
idx1 = EXTRACT64(cx1);
|
|
idx2 = EXTRACT64(cx2);
|
|
|
|
bx0 = cx0;
|
|
bx1 = cx1;
|
|
bx2 = cx2;
|
|
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
|
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
|
lo = __umul128(idx0, cl, &hi);
|
|
|
|
al0 += hi;
|
|
ah0 += lo;
|
|
|
|
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
|
|
|
ah0 ^= ch;
|
|
al0 ^= cl;
|
|
idx0 = al0;
|
|
|
|
|
|
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
|
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
|
lo = __umul128(idx1, cl, &hi);
|
|
|
|
al1 += hi;
|
|
ah1 += lo;
|
|
|
|
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
|
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
|
|
|
ah1 ^= ch;
|
|
al1 ^= cl;
|
|
idx1 = al1;
|
|
|
|
|
|
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
|
|
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
|
|
lo = __umul128(idx2, cl, &hi);
|
|
|
|
al2 += hi;
|
|
ah2 += lo;
|
|
|
|
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
|
|
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
|
|
|
|
ah2 ^= ch;
|
|
al2 ^= cl;
|
|
idx2 = al2;
|
|
}
|
|
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
|
|
|
|
keccakf(h0, 24);
|
|
keccakf(h1, 24);
|
|
keccakf(h2, 24);
|
|
|
|
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
|
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
|
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast<char*>(output) + 64);
|
|
}
|
|
};
|
|
|
|
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
|
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 4>
|
|
{
|
|
public:
|
|
inline static void hash(const void* __restrict__ input,
|
|
size_t size,
|
|
void* __restrict__ output,
|
|
cryptonight_ctx* __restrict__ ctx)
|
|
{
|
|
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
|
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
|
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
|
|
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
|
|
|
|
const uint8_t* l0 = ctx->memory;
|
|
const uint8_t* l1 = ctx->memory + MEM;
|
|
const uint8_t* l2 = ctx->memory + 2 * MEM;
|
|
const uint8_t* l3 = ctx->memory + 3 * MEM;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
|
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
|
|
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
|
|
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
|
|
|
|
uint64_t al0 = h0[0] ^h0[4];
|
|
uint64_t al1 = h1[0] ^h1[4];
|
|
uint64_t al2 = h2[0] ^h2[4];
|
|
uint64_t al3 = h3[0] ^h3[4];
|
|
uint64_t ah0 = h0[1] ^h0[5];
|
|
uint64_t ah1 = h1[1] ^h1[5];
|
|
uint64_t ah2 = h2[1] ^h2[5];
|
|
uint64_t ah3 = h3[1] ^h3[5];
|
|
|
|
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
|
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
|
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
|
|
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
|
|
|
|
uint64_t idx0 = h0[0] ^h0[4];
|
|
uint64_t idx1 = h1[0] ^h1[4];
|
|
uint64_t idx2 = h2[0] ^h2[4];
|
|
uint64_t idx3 = h3[0] ^h3[4];
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx0;
|
|
__m128i cx1;
|
|
__m128i cx2;
|
|
__m128i cx3;
|
|
|
|
if (SOFT_AES) {
|
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
|
|
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
|
|
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
|
|
} else {
|
|
# ifndef XMRIG_ARMv7
|
|
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
|
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
|
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
|
|
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
|
|
|
|
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
|
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
|
cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2);
|
|
cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3);
|
|
# endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
|
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
|
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
|
|
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
|
|
|
|
idx0 = EXTRACT64(cx0);
|
|
idx1 = EXTRACT64(cx1);
|
|
idx2 = EXTRACT64(cx2);
|
|
idx3 = EXTRACT64(cx3);
|
|
|
|
bx0 = cx0;
|
|
bx1 = cx1;
|
|
bx2 = cx2;
|
|
bx3 = cx3;
|
|
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
|
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
|
lo = __umul128(idx0, cl, &hi);
|
|
|
|
al0 += hi;
|
|
ah0 += lo;
|
|
|
|
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
|
|
|
ah0 ^= ch;
|
|
al0 ^= cl;
|
|
idx0 = al0;
|
|
|
|
|
|
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
|
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
|
lo = __umul128(idx1, cl, &hi);
|
|
|
|
al1 += hi;
|
|
ah1 += lo;
|
|
|
|
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
|
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
|
|
|
ah1 ^= ch;
|
|
al1 ^= cl;
|
|
idx1 = al1;
|
|
|
|
|
|
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
|
|
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
|
|
lo = __umul128(idx2, cl, &hi);
|
|
|
|
al2 += hi;
|
|
ah2 += lo;
|
|
|
|
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
|
|
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
|
|
|
|
ah2 ^= ch;
|
|
al2 ^= cl;
|
|
idx2 = al2;
|
|
|
|
|
|
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
|
|
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
|
|
lo = __umul128(idx3, cl, &hi);
|
|
|
|
al3 += hi;
|
|
ah3 += lo;
|
|
|
|
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
|
|
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
|
|
|
|
ah3 ^= ch;
|
|
al3 ^= cl;
|
|
idx3 = al3;
|
|
}
|
|
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
|
|
|
|
keccakf(h0, 24);
|
|
keccakf(h1, 24);
|
|
keccakf(h2, 24);
|
|
keccakf(h3, 24);
|
|
|
|
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
|
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
|
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast<char*>(output) + 64);
|
|
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast<char*>(output) + 96);
|
|
}
|
|
};
|
|
|
|
template<size_t ITERATIONS, size_t MEM, size_t MASK, bool SOFT_AES>
|
|
class CryptoNightMultiHash<ITERATIONS, MEM, MASK, SOFT_AES, 5>
|
|
{
|
|
public:
|
|
inline static void hash(const void* __restrict__ input,
|
|
size_t size,
|
|
void* __restrict__ output,
|
|
cryptonight_ctx* __restrict__ ctx)
|
|
{
|
|
keccak((const uint8_t*) input, (int) size, ctx->state[0], 200);
|
|
keccak((const uint8_t*) input + size, (int) size, ctx->state[1], 200);
|
|
keccak((const uint8_t*) input + 2 * size, (int) size, ctx->state[2], 200);
|
|
keccak((const uint8_t*) input + 3 * size, (int) size, ctx->state[3], 200);
|
|
keccak((const uint8_t*) input + 4 * size, (int) size, ctx->state[4], 200);
|
|
|
|
const uint8_t* l0 = ctx->memory;
|
|
const uint8_t* l1 = ctx->memory + MEM;
|
|
const uint8_t* l2 = ctx->memory + 2 * MEM;
|
|
const uint8_t* l3 = ctx->memory + 3 * MEM;
|
|
const uint8_t* l4 = ctx->memory + 4 * MEM;
|
|
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx->state[0]);
|
|
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx->state[1]);
|
|
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx->state[2]);
|
|
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx->state[3]);
|
|
uint64_t* h4 = reinterpret_cast<uint64_t*>(ctx->state[4]);
|
|
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
|
|
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
|
|
|
|
uint64_t al0 = h0[0] ^h0[4];
|
|
uint64_t al1 = h1[0] ^h1[4];
|
|
uint64_t al2 = h2[0] ^h2[4];
|
|
uint64_t al3 = h3[0] ^h3[4];
|
|
uint64_t al4 = h4[0] ^h4[4];
|
|
uint64_t ah0 = h0[1] ^h0[5];
|
|
uint64_t ah1 = h1[1] ^h1[5];
|
|
uint64_t ah2 = h2[1] ^h2[5];
|
|
uint64_t ah3 = h3[1] ^h3[5];
|
|
uint64_t ah4 = h4[1] ^h4[5];
|
|
|
|
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
|
|
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
|
|
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
|
|
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
|
|
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
|
|
|
|
uint64_t idx0 = h0[0] ^h0[4];
|
|
uint64_t idx1 = h1[0] ^h1[4];
|
|
uint64_t idx2 = h2[0] ^h2[4];
|
|
uint64_t idx3 = h3[0] ^h3[4];
|
|
uint64_t idx4 = h4[0] ^h4[4];
|
|
|
|
for (size_t i = 0; i < ITERATIONS; i++) {
|
|
__m128i cx0;
|
|
__m128i cx1;
|
|
__m128i cx2;
|
|
__m128i cx3;
|
|
__m128i cx4;
|
|
|
|
if (SOFT_AES) {
|
|
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
|
|
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
|
|
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
|
|
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
|
|
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4));
|
|
} else {
|
|
# ifndef XMRIG_ARMv7
|
|
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
|
|
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
|
|
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
|
|
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
|
|
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
|
|
|
|
cx0 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx0, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah0, al0);
|
|
cx1 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx1, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah1, al1);
|
|
cx2 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx2, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah2, al2);
|
|
cx3 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx3, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah3, al3);
|
|
cx4 = vreinterpretq_m128i_u8(vaesmcq_u8(vaeseq_u8(cx4, vdupq_n_u8(0)))) ^ _mm_set_epi64x(ah4, al4);
|
|
# endif
|
|
}
|
|
|
|
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
|
|
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
|
|
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
|
|
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
|
|
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
|
|
|
|
idx0 = EXTRACT64(cx0);
|
|
idx1 = EXTRACT64(cx1);
|
|
idx2 = EXTRACT64(cx2);
|
|
idx3 = EXTRACT64(cx3);
|
|
idx4 = EXTRACT64(cx4);
|
|
|
|
bx0 = cx0;
|
|
bx1 = cx1;
|
|
bx2 = cx2;
|
|
bx3 = cx3;
|
|
bx4 = cx4;
|
|
|
|
uint64_t hi, lo, cl, ch;
|
|
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
|
|
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
|
|
lo = __umul128(idx0, cl, &hi);
|
|
|
|
al0 += hi;
|
|
ah0 += lo;
|
|
|
|
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
|
|
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
|
|
|
|
ah0 ^= ch;
|
|
al0 ^= cl;
|
|
idx0 = al0;
|
|
|
|
|
|
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
|
|
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
|
|
lo = __umul128(idx1, cl, &hi);
|
|
|
|
al1 += hi;
|
|
ah1 += lo;
|
|
|
|
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
|
|
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
|
|
|
|
ah1 ^= ch;
|
|
al1 ^= cl;
|
|
idx1 = al1;
|
|
|
|
|
|
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
|
|
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
|
|
lo = __umul128(idx2, cl, &hi);
|
|
|
|
al2 += hi;
|
|
ah2 += lo;
|
|
|
|
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
|
|
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
|
|
|
|
ah2 ^= ch;
|
|
al2 ^= cl;
|
|
idx2 = al2;
|
|
|
|
|
|
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
|
|
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
|
|
lo = __umul128(idx3, cl, &hi);
|
|
|
|
al3 += hi;
|
|
ah3 += lo;
|
|
|
|
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
|
|
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
|
|
|
|
ah3 ^= ch;
|
|
al3 ^= cl;
|
|
idx3 = al3;
|
|
|
|
|
|
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
|
|
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
|
|
lo = __umul128(idx4, cl, &hi);
|
|
|
|
al4 += hi;
|
|
ah4 += lo;
|
|
|
|
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
|
|
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
|
|
|
|
ah4 ^= ch;
|
|
al4 ^= cl;
|
|
idx4 = al4;
|
|
}
|
|
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
|
|
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
|
|
|
|
keccakf(h0, 24);
|
|
keccakf(h1, 24);
|
|
keccakf(h2, 24);
|
|
keccakf(h3, 24);
|
|
keccakf(h4, 24);
|
|
|
|
extra_hashes[ctx->state[0][0] & 3](ctx->state[0], 200, static_cast<char*>(output));
|
|
extra_hashes[ctx->state[1][0] & 3](ctx->state[1], 200, static_cast<char*>(output) + 32);
|
|
extra_hashes[ctx->state[2][0] & 3](ctx->state[2], 200, static_cast<char*>(output) + 64);
|
|
extra_hashes[ctx->state[3][0] & 3](ctx->state[3], 200, static_cast<char*>(output) + 96);
|
|
extra_hashes[ctx->state[4][0] & 3](ctx->state[4], 200, static_cast<char*>(output) + 128);
|
|
}
|
|
};
|
|
|
|
#endif /* __CRYPTONIGHT_ARM_H__ */
|