REDACTED-rig/src/crypto/CryptoNight_x86.h
Ben Gräf 1273e45e46
Integrated new Algos (#224)
- Added XLT v5/9 with autodetect(algo: "cryptonight", variant: "xtl" (autodetect), "xtlv9" (force v9))
- Added cn-lite variant UPX/uPlexa (algo: "cryptonight-lite", variant "upx")
- Added force-pow-variant parameter to force usage of the variant from the config and skip parsing of pow/variant from job/pool
2019-01-04 18:34:48 +00:00

5787 lines
230 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2016-2017 XMRig <support@xmrig.com>
* Copyright 2018 Sebastian Stolzenberg <https://github.com/sebastianstolzenberg>
* Copyright 2018 BenDroid <ben@graef.in>
*
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef __CRYPTONIGHT_X86_H__
#define __CRYPTONIGHT_X86_H__
#ifdef __GNUC__
# include <x86intrin.h>
#include <cfenv>
#else
# include <intrin.h>
# define __restrict__ __restrict
#endif
#include "crypto/CryptoNight.h"
#include "crypto/soft_aes.h"
#include "AsmOptimization.h"
extern "C"
{
#include "crypto/c_keccak.h"
#include "crypto/c_groestl.h"
#include "crypto/c_blake256.h"
#include "crypto/c_jh.h"
#include "crypto/c_skein.h"
#ifndef XMRIG_NO_ASM
void cnv1_mainloop_sandybridge_asm(ScratchPad* ctx0);
void cn_litev1_mainloop_sandybridge_asm(ScratchPad* ctx0);
void cn_fast_mainloop_sandybridge_asm(ScratchPad* ctx0);
void cnv2_mainloop_ivybridge_asm(ScratchPad* ctx0);
void cnv2_mainloop_ryzen_asm(ScratchPad* ctx0);
void cnv2_mainloop_bulldozer_asm(ScratchPad* ctx0);
void cnv2_double_mainloop_sandybridge_asm(ScratchPad* ctx0, ScratchPad* ctx1);
void cn_fastv2_mainloop_ivybridge_asm(ScratchPad* ctx0);
void cn_fastv2_mainloop_ryzen_asm(ScratchPad* ctx0);
void cn_fastv2_mainloop_bulldozer_asm(ScratchPad* ctx0);
void cn_fastv2_double_mainloop_sandybridge_asm(ScratchPad* ctx0, ScratchPad* ctx1);
void cn_liteupx_mainloop_sandybridge_asm(ScratchPad* ctx0);
void cnv1_mainloop_soft_aes_sandybridge_asm(ScratchPad* ctx0);
void cn_fast_mainloop_soft_aes_sandybridge_asm(ScratchPad* ctx0);
void cn_litev1_mainloop_soft_aes_sandybridge_asm(ScratchPad* ctx0);
void cnv2_mainloop_soft_aes_sandybridge_asm(ScratchPad* ctx0);
void cn_fastv2_mainloop_soft_aes_sandybridge_asm(ScratchPad* ctx0);
void cn_liteupx_mainloop_soft_aes_sandybridge_asm(ScratchPad* ctx0);
#endif
}
#ifdef __GNUC__
#define LIKELY(X) __builtin_expect(X, 1)
#define UNLIKELY(X) __builtin_expect(X, 0)
#else
#define LIKELY(X) X
#define UNLIKELY(X) X
#endif
#if defined(__x86_64__) || defined(_M_AMD64)
# define EXTRACT64(X) _mm_cvtsi128_si64(X)
# ifdef __GNUC__
static inline uint64_t __umul128(uint64_t a, uint64_t b, uint64_t* hi)
{
unsigned __int128 r = (unsigned __int128) a * (unsigned __int128) b;
*hi = r >> 64;
return (uint64_t) r;
}
# else
#define __umul128 _umul128
# endif
#elif defined(__i386__) || defined(_M_IX86)
# define HI32(X) \
_mm_srli_si128((X), 4)
# define EXTRACT64(X) \
((uint64_t)(uint32_t)_mm_cvtsi128_si32(X) | \
((uint64_t)(uint32_t)_mm_cvtsi128_si32(HI32(X)) << 32))
static inline int64_t _mm_cvtsi128_si64(__m128i a)
{
return ((uint64_t)(uint32_t)_mm_cvtsi128_si32(a) | ((uint64_t)(uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(a, 4)) << 32));
}
static inline __m128i _mm_cvtsi64_si128(int64_t a) {
return _mm_set_epi64x(0, a);
}
static inline uint64_t __umul128(uint64_t multiplier, uint64_t multiplicand, uint64_t *product_hi) {
// multiplier = ab = a * 2^32 + b
// multiplicand = cd = c * 2^32 + d
// ab * cd = a * c * 2^64 + (a * d + b * c) * 2^32 + b * d
uint64_t a = multiplier >> 32;
uint64_t b = multiplier & 0xFFFFFFFF;
uint64_t c = multiplicand >> 32;
uint64_t d = multiplicand & 0xFFFFFFFF;
//uint64_t ac = a * c;
uint64_t ad = a * d;
//uint64_t bc = b * c;
uint64_t bd = b * d;
uint64_t adbc = ad + (b * c);
uint64_t adbc_carry = adbc < ad ? 1 : 0;
// multiplier * multiplicand = product_hi * 2^64 + product_lo
uint64_t product_lo = bd + (adbc << 32);
uint64_t product_lo_carry = product_lo < bd ? 1 : 0;
*product_hi = (a * c) + (adbc >> 32) + (adbc_carry << 32) + product_lo_carry;
return product_lo;
}
#endif
#ifdef _MSC_VER
#else
#endif
#ifdef _MSC_VER
# define SET_ROUNDING_MODE_UP() _control87(RC_UP, MCW_RC);
#else
# define SET_ROUNDING_MODE_UP() std::fesetround(FE_UPWARD);
#endif
# define SHUFFLE_PHASE_1(l, idx, bx0, bx1, ax) \
{ \
const __m128i chunk1 = _mm_load_si128((__m128i *)((l) + ((idx) ^ 0x10))); \
const __m128i chunk2 = _mm_load_si128((__m128i *)((l) + ((idx) ^ 0x20))); \
const __m128i chunk3 = _mm_load_si128((__m128i *)((l) + ((idx) ^ 0x30))); \
_mm_store_si128((__m128i *)((l) + ((idx) ^ 0x10)), _mm_add_epi64(chunk3, bx1)); \
_mm_store_si128((__m128i *)((l) + ((idx) ^ 0x20)), _mm_add_epi64(chunk1, bx0)); \
_mm_store_si128((__m128i *)((l) + ((idx) ^ 0x30)), _mm_add_epi64(chunk2, ax)); \
}
# define INTEGER_MATH_V2(idx, cl, cx) \
{ \
const uint64_t cx_ = _mm_cvtsi128_si64(cx); \
cl ^= static_cast<uint64_t>(_mm_cvtsi128_si64(division_result_xmm##idx)) ^ (sqrt_result##idx << 32); \
const uint32_t d_ = (cx_ + (sqrt_result##idx << 1)) | 0x80000001UL; \
const uint64_t cx1_ = _mm_cvtsi128_si64(_mm_srli_si128(cx, 8)); \
const uint64_t division_result = static_cast<uint32_t>(cx1_ / d_) + ((cx1_ % d_) << 32); \
division_result_xmm##idx = _mm_cvtsi64_si128(static_cast<int64_t>(division_result)); \
sqrt_result##idx = int_sqrt_v2(cx_ + division_result); \
}
# define SHUFFLE_PHASE_2(l, idx, bx0, bx1, ax, lo, hi) \
{ \
const __m128i chunk1 = _mm_xor_si128(_mm_load_si128((__m128i *)((l) + ((idx) ^ 0x10))), _mm_set_epi64x(lo, hi)); \
const __m128i chunk2 = _mm_load_si128((__m128i *)((l) + ((idx) ^ 0x20))); \
const __m128i chunk3 = _mm_load_si128((__m128i *)((l) + ((idx) ^ 0x30))); \
hi ^= ((uint64_t*)((l) + ((idx) ^ 0x20)))[0]; \
lo ^= ((uint64_t*)((l) + ((idx) ^ 0x20)))[1]; \
_mm_store_si128((__m128i *)((l) + ((idx) ^ 0x10)), _mm_add_epi64(chunk3, bx1)); \
_mm_store_si128((__m128i *)((l) + ((idx) ^ 0x20)), _mm_add_epi64(chunk1, bx0)); \
_mm_store_si128((__m128i *)((l) + ((idx) ^ 0x30)), _mm_add_epi64(chunk2, ax)); \
}
static inline void do_blake_hash(const uint8_t *input, size_t len, uint8_t *output) {
blake256_hash(output, input, len);
}
static inline void do_groestl_hash(const uint8_t *input, size_t len, uint8_t *output) {
groestl(input, len * 8, output);
}
static inline void do_jh_hash(const uint8_t *input, size_t len, uint8_t *output) {
jh_hash(32 * 8, input, 8 * len, output);
}
static inline void do_skein_hash(const uint8_t *input, size_t len, uint8_t *output) {
xmr_skein(input, output);
}
void (* const extra_hashes[4])(const uint8_t *, size_t, uint8_t *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
template<uint8_t rcon>
static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2)
{
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
*xout0 = sl_xor(*xout0);
*xout0 = _mm_xor_si128(*xout0, xout1);
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
*xout2 = sl_xor(*xout2);
*xout2 = _mm_xor_si128(*xout2, xout1);
}
template<uint8_t rcon>
static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2)
{
__m128i xout1 = soft_aeskeygenassist<rcon>(*xout2);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
*xout0 = sl_xor(*xout0);
*xout0 = _mm_xor_si128(*xout0, xout1);
xout1 = soft_aeskeygenassist<0x00>(*xout0);
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
*xout2 = sl_xor(*xout2);
*xout2 = _mm_xor_si128(*xout2, xout1);
}
template<bool SOFT_AES>
static inline void
aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5,
__m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : aes_genkey_sub<0x01>(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : aes_genkey_sub<0x02>(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : aes_genkey_sub<0x04>(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : aes_genkey_sub<0x08>(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
template<bool SOFT_AES>
static inline void
aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6,
__m128i* x7)
{
if (SOFT_AES) {
*x0 = soft_aesenc((uint32_t*)x0, key);
*x1 = soft_aesenc((uint32_t*)x1, key);
*x2 = soft_aesenc((uint32_t*)x2, key);
*x3 = soft_aesenc((uint32_t*)x3, key);
*x4 = soft_aesenc((uint32_t*)x4, key);
*x5 = soft_aesenc((uint32_t*)x5, key);
*x6 = soft_aesenc((uint32_t*)x6, key);
*x7 = soft_aesenc((uint32_t*)x7, key);
}
else {
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
}
inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7)
{
__m128i tmp0 = x0;
x0 = _mm_xor_si128(x0, x1);
x1 = _mm_xor_si128(x1, x2);
x2 = _mm_xor_si128(x2, x3);
x3 = _mm_xor_si128(x3, x4);
x4 = _mm_xor_si128(x4, x5);
x5 = _mm_xor_si128(x5, x6);
x6 = _mm_xor_si128(x6, x7);
x7 = _mm_xor_si128(x7, tmp0);
}
template<size_t MEM, bool SOFT_AES>
static inline void cn_explode_scratchpad(const __m128i* input, __m128i* output)
{
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey<SOFT_AES>(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
}
}
template<size_t MEM, bool SOFT_AES>
static inline void cn_explode_scratchpad_heavy(const __m128i* input, __m128i* output)
{
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey<SOFT_AES>(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
for (size_t i = 0; i < 16; i++) {
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7);
}
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + i + 0, xin0);
_mm_store_si128(output + i + 1, xin1);
_mm_store_si128(output + i + 2, xin2);
_mm_store_si128(output + i + 3, xin3);
_mm_store_si128(output + i + 4, xin4);
_mm_store_si128(output + i + 5, xin5);
_mm_store_si128(output + i + 6, xin6);
_mm_store_si128(output + i + 7, xin7);
}
}
template<size_t MEM, bool SOFT_AES>
static inline void cn_implode_scratchpad(const __m128i* input, __m128i* output)
{
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey<SOFT_AES>(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
template<size_t MEM, bool SOFT_AES>
static inline void cn_implode_scratchpad_heavy(const __m128i* input, __m128i* output)
{
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
aes_genkey<SOFT_AES>(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
for (size_t i = 0; i < MEM / sizeof(__m128i); i += 8) {
xout0 = _mm_xor_si128(_mm_load_si128(input + i + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + i + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + i + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + i + 3), xout3);
xout4 = _mm_xor_si128(_mm_load_si128(input + i + 4), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + i + 5), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + i + 6), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + i + 7), xout7);
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
for (size_t i = 0; i < 16; i++) {
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
static inline void int_sqrt_v2_fixup(uint64_t& r, uint64_t n0)
{
if (LIKELY(r & 524287))
{
r >>= 19;
return;
}
--r;
const uint64_t s = r >> 20;
r >>= 19;
uint64_t x2 = (s - (1022ULL << 32)) * (r - s - (1022ULL << 32) + 1);
#if (defined(_MSC_VER) || __GNUC__ > 7 || (__GNUC__ == 7 && __GNUC_MINOR__ > 1)) && (defined(__x86_64__) || defined(_M_AMD64))
_addcarry_u64(_subborrow_u64(0, x2, n0, (unsigned long long int*)&x2), r, 0, (unsigned long long int*)&r);
#else
// GCC versions prior to 7 don't generate correct assembly for _subborrow_u64 -> _addcarry_u64 sequence
// Fallback to simpler code
if (x2 < n0) ++r;
#endif
}
static inline uint64_t int_sqrt_v2(uint64_t n0)
{
__m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(n0 >> 12), _mm_set_epi64x(0, 1023ULL << 52)));
x = _mm_sqrt_sd(_mm_setzero_pd(), x);
uint64_t r = static_cast<uint64_t>(_mm_cvtsi128_si64(_mm_castpd_si128(x)));
int_sqrt_v2_fixup(r, n0);
return r;
}
// n-Loop version. Seems to be little bit slower then the hardcoded one.
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES, size_t NUM_HASH_BLOCKS>
class CryptoNightMultiHash
{
public:
inline static void hash(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
__m128i ax[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
ax[hashBlock] = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
if (SOFT_AES) {
cx[hashBlock] = soft_aesenc((uint32_t *) &l[hashBlock][idx[hashBlock] & MASK], ax[hashBlock]);
} else {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
cx[hashBlock] = _mm_aesenc_si128(cx[hashBlock], ax[hashBlock]);
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
uint64_t hi, lo, cl, ch;
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
bx[hashBlock] = cx[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
inline static void hashPowV2(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
uint64_t tweak1_2[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
__m128i ax[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
tweak1_2[hashBlock] = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + hashBlock * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[hashBlock]->state) + 24));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
ax[hashBlock] = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
if (SOFT_AES) {
cx[hashBlock] = soft_aesenc((uint32_t *) &l[hashBlock][idx[hashBlock] & MASK], ax[hashBlock]);
} else {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
cx[hashBlock] = _mm_aesenc_si128(cx[hashBlock], ax[hashBlock]);
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK], _mm_xor_si128(bx[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
const uint8_t tmp = reinterpret_cast<const uint8_t *>(&l[hashBlock][idx[hashBlock] & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t *) (&l[hashBlock][idx[hashBlock] & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
uint64_t hi, lo, cl, ch;
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= tweak1_2[hashBlock];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
bx[hashBlock] = cx[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
inline static void hashPowV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
// multi
inline static void hashPowV3(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];CryptoNightMultiHash<0x40000, POW_DEFAULT_INDEX_SHIFT, MEMORY_LITE, 0xFFFF0, true, NUM_HASH_BLOCKS>::hashLiteTube(
input, size, output, scratchPad);
uint64_t sqrt_result[NUM_HASH_BLOCKS];
__m128i bx0[NUM_HASH_BLOCKS];
__m128i bx1[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
__m128i ax[NUM_HASH_BLOCKS];
__m128i division_result_xmm[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx0[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
bx1[hashBlock] = _mm_set_epi64x(h[hashBlock][9] ^ h[hashBlock][11], h[hashBlock][8] ^ h[hashBlock][10]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
division_result_xmm[hashBlock] = _mm_cvtsi64_si128(h[hashBlock][12]);
sqrt_result[hashBlock] = h[hashBlock][13];
}
SET_ROUNDING_MODE_UP();
uint64_t sqrt_result0;
__m128i division_result_xmm0;
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
ax[hashBlock] = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
if (SOFT_AES) {
cx[hashBlock] = soft_aesenc((uint32_t *) &l[hashBlock][idx[hashBlock] & MASK], ax[hashBlock]);
} else {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
cx[hashBlock] = _mm_aesenc_si128(cx[hashBlock], ax[hashBlock]);
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
SHUFFLE_PHASE_1(l[hashBlock], idx[hashBlock] & MASK, bx0[hashBlock], bx1[hashBlock], ax[hashBlock])
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx0[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
uint64_t hi, lo, cl, ch;
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cl = ((uint64_t *) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t *) &l[hashBlock][idx[hashBlock] & MASK])[1];
sqrt_result0 = sqrt_result[hashBlock];
division_result_xmm0 = division_result_xmm[hashBlock];
INTEGER_MATH_V2(0, cl, cx[hashBlock])
sqrt_result[hashBlock] = sqrt_result0;
division_result_xmm[hashBlock] = division_result_xmm0;
lo = __umul128(idx[hashBlock], cl, &hi);
SHUFFLE_PHASE_2(l[hashBlock], idx[hashBlock] & MASK, bx0[hashBlock], bx1[hashBlock], ax[hashBlock], lo, hi)
al[hashBlock] += hi;
ah[hashBlock] += lo;
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
bx1[hashBlock] = bx0[hashBlock];
bx0[hashBlock] = cx[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
inline static void hashPowV3_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashPowFastV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashLiteTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
uint64_t tweak1_2[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
__m128i ax[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
tweak1_2[hashBlock] = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + hashBlock * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[hashBlock]->state) + 24));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
ax[hashBlock] = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
if (SOFT_AES) {
cx[hashBlock] = soft_aesenc((uint32_t *) &l[hashBlock][idx[hashBlock] & MASK], ax[hashBlock]);
} else {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
cx[hashBlock] = _mm_aesenc_si128(cx[hashBlock], ax[hashBlock]);
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
const uint8_t tmp = reinterpret_cast<const uint8_t *>(&l[hashBlock][idx[hashBlock] & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t *) (&l[hashBlock][idx[hashBlock] & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
uint64_t hi, lo, cl, ch;
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*)&l[hashBlock][idx[hashBlock] & MASK])[1] ^= ((uint64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
bx[hashBlock] = cx[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
__m128i ax[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
ax[hashBlock] = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
if (SOFT_AES) {
cx[hashBlock] = soft_aesenc((uint32_t *) &l[hashBlock][idx[hashBlock] & MASK], ax[hashBlock]);
} else {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
cx[hashBlock] = _mm_aesenc_si128(cx[hashBlock], ax[hashBlock]);
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
uint64_t hi, lo, cl, ch;
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
int64_t n = ((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
int32_t d = ((int32_t*)&l[hashBlock][idx[hashBlock] & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0] = n ^ q;
idx[hashBlock] = d ^ q;
bx[hashBlock] = cx[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
__m128i ax[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
ax[hashBlock] = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
if (SOFT_AES) {
cx[hashBlock] = soft_aesenc((uint32_t *) &l[hashBlock][idx[hashBlock] & MASK], ax[hashBlock]);
} else {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
cx[hashBlock] = _mm_aesenc_si128(cx[hashBlock], ax[hashBlock]);
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
uint64_t hi, lo, cl, ch;
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
int64_t n = ((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
int32_t d = ((int32_t*)&l[hashBlock][idx[hashBlock] & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0] = n ^ q;
idx[hashBlock] = (~d) ^ q;
bx[hashBlock] = cx[hashBlock];
}
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
inline static void hashHeavyTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l[NUM_HASH_BLOCKS];
uint64_t* h[NUM_HASH_BLOCKS];
uint64_t al[NUM_HASH_BLOCKS];
uint64_t ah[NUM_HASH_BLOCKS];
uint64_t idx[NUM_HASH_BLOCKS];
uint64_t tweak1_2[NUM_HASH_BLOCKS];
__m128i bx[NUM_HASH_BLOCKS];
__m128i cx[NUM_HASH_BLOCKS];
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
keccak(static_cast<const uint8_t*>(input) + hashBlock * size, (int) size, scratchPad[hashBlock]->state, 200);
tweak1_2[hashBlock] = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + hashBlock * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[hashBlock]->state) + 24));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
l[hashBlock] = scratchPad[hashBlock]->memory;
h[hashBlock] = reinterpret_cast<uint64_t*>(scratchPad[hashBlock]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h[hashBlock], (__m128i*) l[hashBlock]);
al[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
ah[hashBlock] = h[hashBlock][1] ^ h[hashBlock][5];
bx[hashBlock] = _mm_set_epi64x(h[hashBlock][3] ^ h[hashBlock][7], h[hashBlock][2] ^ h[hashBlock][6]);
idx[hashBlock] = h[hashBlock][0] ^ h[hashBlock][4];
}
union alignas(16) {
uint32_t k[4];
uint64_t v64[2];
};
alignas(16) uint32_t x[4];
#define BYTE(p, i) ((unsigned char*)&p)[i]
for (size_t i = 0; i < ITERATIONS; i++) {
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cx[hashBlock] = _mm_load_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK]);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
const __m128i &key = _mm_set_epi64x(ah[hashBlock], al[hashBlock]);
_mm_store_si128((__m128i *) k, key);
cx[hashBlock] = _mm_xor_si128(cx[hashBlock], _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i *) x, cx[hashBlock]);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^
saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^
saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^
saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^
saes_table[3][BYTE(x[2], 3)];
cx[hashBlock] = _mm_load_si128((__m128i *) k);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
_mm_store_si128((__m128i *) &l[hashBlock][idx[hashBlock] & MASK],
_mm_xor_si128(bx[hashBlock], cx[hashBlock]));
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
const uint8_t tmp = reinterpret_cast<const uint8_t *>(&l[hashBlock][idx[hashBlock] & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t *) (&l[hashBlock][idx[hashBlock] & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
idx[hashBlock] = EXTRACT64(cx[hashBlock]);
}
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0];
ch = ((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1];
lo = __umul128(idx[hashBlock], cl, &hi);
al[hashBlock] += hi;
ah[hashBlock] += lo;
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[0] = al[hashBlock];
((uint64_t*) &l[hashBlock][idx[hashBlock] & MASK])[1] = ah[hashBlock];
ah[hashBlock] ^= tweak1_2[hashBlock];
((uint64_t*)&l[hashBlock][idx[hashBlock] & MASK])[1] ^= ((uint64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
ah[hashBlock] ^= ch;
al[hashBlock] ^= cl;
idx[hashBlock] = al[hashBlock];
int64_t n = ((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0];
int32_t d = ((int32_t*)&l[hashBlock][idx[hashBlock] & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[hashBlock][idx[hashBlock] & MASK])[0] = n ^ q;
idx[hashBlock] = d ^ q;
bx[hashBlock] = cx[hashBlock];
}
}
#undef BYTE
for (size_t hashBlock = 0; hashBlock < NUM_HASH_BLOCKS; ++hashBlock) {
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l[hashBlock], (__m128i*) h[hashBlock]);
keccakf(h[hashBlock], 24);
extra_hashes[scratchPad[hashBlock]->state[0] & 3](scratchPad[hashBlock]->state, 200,
output + hashBlock * 32);
}
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
class CryptoNightMultiHash<ITERATIONS, INDEX_SHIFT, MEM, MASK, SOFT_AES, 1>
{
public:
inline static void hash(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
l = scratchPad[0]->memory;
h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= ch;
al ^= cl;
idx = al;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
inline static void hashPowV2(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
uint64_t tweak1_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
l = scratchPad[0]->memory;
h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
const uint8_t tmp = reinterpret_cast<const uint8_t*>(&l[idx & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l[idx & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
ah ^= tweak1_2;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= tweak1_2;
ah ^= ch;
al ^= cl;
idx = al;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
inline static void hashPowV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
const uint8_t*l = scratchPad[0]->memory;
uint64_t* h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
#ifndef XMRIG_NO_ASM
if (INDEX_SHIFT == POW_DEFAULT_INDEX_SHIFT) {
scratchPad[0]->variant_table = variant1_table;
} else {
scratchPad[0]->variant_table = variant_xtl_table;
}
scratchPad[0]->input = input;
if (SOFT_AES) {
scratchPad[0]->t_fn = (const uint32_t*)saes_table;
if (ITERATIONS == 0x80000) {
cnv1_mainloop_soft_aes_sandybridge_asm(scratchPad[0]);
} else if (ITERATIONS == 0x40000) {
if (MASK == 0x1FFFF0) {
cn_fast_mainloop_soft_aes_sandybridge_asm(scratchPad[0]);
} else {
cn_litev1_mainloop_soft_aes_sandybridge_asm(scratchPad[0]);
}
} else {
cn_liteupx_mainloop_soft_aes_sandybridge_asm(scratchPad[0]);
}
} else {
if (ITERATIONS == 0x80000) {
cnv1_mainloop_sandybridge_asm(scratchPad[0]);
} else if (ITERATIONS == 0x40000) {
if (MASK == 0x1FFFF0) {
cn_fast_mainloop_sandybridge_asm(scratchPad[0]);
} else {
cn_litev1_mainloop_sandybridge_asm(scratchPad[0]);
}
} else {
cn_liteupx_mainloop_sandybridge_asm(scratchPad[0]);
}
}
#endif
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
// single
inline static void hashPowV3(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
const uint8_t*l = scratchPad[0]->memory;
uint64_t* h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
uint64_t al = h[0] ^ h[4];
uint64_t ah = h[1] ^ h[5];
__m128i bx0 = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
__m128i bx1 = _mm_set_epi64x(h[9] ^ h[11], h[8] ^ h[10]);
uint64_t idx = h[0] ^ h[4];
__m128i division_result_xmm0 = _mm_cvtsi64_si128(h[12]);
uint64_t sqrt_result0 = h[13];
SET_ROUNDING_MODE_UP();
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
const __m128i ax = _mm_set_epi64x(ah, al);
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], ax);
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, ax);
}
SHUFFLE_PHASE_1(l, (idx&MASK), bx0, bx1, ax)
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx0, cx));
idx = EXTRACT64(cx);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
INTEGER_MATH_V2(0, cl, cx)
lo = __umul128(idx, cl, &hi);
SHUFFLE_PHASE_2(l, (idx&MASK), bx0, bx1, ax, lo, hi)
al += hi; // two fence statements are overhead
ah += lo;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= ch;
al ^= cl;
idx = al;
bx1 = bx0;
bx0 = cx;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
// single asm
inline static void hashPowV3_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
const uint8_t* l = scratchPad[0]->memory;
uint64_t* h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
#ifndef XMRIG_NO_ASM
if (asmOptimization == AsmOptimization::ASM_INTEL) {
if (SOFT_AES) {
scratchPad[0]->input = input;
scratchPad[0]->t_fn = (const uint32_t*)saes_table;
cnv2_mainloop_soft_aes_sandybridge_asm(scratchPad[0]);
} else {
cnv2_mainloop_ivybridge_asm(scratchPad[0]);
}
} else if (asmOptimization == AsmOptimization::ASM_RYZEN) {
cnv2_mainloop_ryzen_asm(scratchPad[0]);
} else if (asmOptimization == AsmOptimization::ASM_BULLDOZER) {
cnv2_mainloop_bulldozer_asm(scratchPad[0]);
}
#endif
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
// single asm
inline static void hashPowFastV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
const uint8_t* l = scratchPad[0]->memory;
uint64_t* h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
#ifndef XMRIG_NO_ASM
if (asmOptimization == AsmOptimization::ASM_INTEL) {
if (SOFT_AES) {
scratchPad[0]->input = input;
scratchPad[0]->t_fn = (const uint32_t*)saes_table;
cn_fastv2_mainloop_soft_aes_sandybridge_asm(scratchPad[0]);
} else {
cn_fastv2_mainloop_ivybridge_asm(scratchPad[0]);
}
} else if (asmOptimization == AsmOptimization::ASM_RYZEN) {
cn_fastv2_mainloop_ryzen_asm(scratchPad[0]);
} else if (asmOptimization == AsmOptimization::ASM_BULLDOZER) {
cn_fastv2_mainloop_bulldozer_asm(scratchPad[0]);
}
#endif
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
inline static void hashLiteTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
uint64_t tweak1_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
l = scratchPad[0]->memory;
h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
const uint8_t tmp = reinterpret_cast<const uint8_t*>(&l[idx & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l[idx & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
ah ^= tweak1_2;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= tweak1_2;
((uint64_t*)&l[idx & MASK])[1] ^= ((uint64_t*)&l[idx & MASK])[0];
ah ^= ch;
al ^= cl;
idx = al;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
l = scratchPad[0]->memory;
h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= ch;
al ^= cl;
idx = al;
int64_t n = ((int64_t*)&l[idx & MASK])[0];
int32_t d = ((int32_t*)&l[idx & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[idx & MASK])[0] = n ^ q;
idx = d ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
l = scratchPad[0]->memory;
h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx;
if (SOFT_AES) {
cx = soft_aesenc((uint32_t*)&l[idx & MASK], _mm_set_epi64x(ah, al));
} else {
cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
cx = _mm_aesenc_si128(cx, _mm_set_epi64x(ah, al));
}
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= ch;
al ^= cl;
idx = al;
int64_t n = ((int64_t*)&l[idx & MASK])[0];
int32_t d = ((int32_t*)&l[idx & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[idx & MASK])[0] = n ^ q;
idx = (~d) ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
inline static void hashHeavyTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
const uint8_t* l;
uint64_t* h;
uint64_t al;
uint64_t ah;
__m128i bx;
uint64_t idx;
keccak(static_cast<const uint8_t*>(input), (int) size, scratchPad[0]->state, 200);
uint64_t tweak1_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
l = scratchPad[0]->memory;
h = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h, (__m128i*) l);
al = h[0] ^ h[4];
ah = h[1] ^ h[5];
bx = _mm_set_epi64x(h[3] ^ h[7], h[2] ^ h[6]);
idx = h[0] ^ h[4];
union alignas(16) {
uint32_t k[4];
uint64_t v64[2];
};
alignas(16) uint32_t x[4];
#define BYTE(p, i) ((unsigned char*)&p)[i]
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx = _mm_load_si128((__m128i*) &l[idx & MASK]);
const __m128i& key = _mm_set_epi64x(ah, al);
_mm_store_si128((__m128i*)k, key);
cx = _mm_xor_si128(cx, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i*)x, cx);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^ saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^ saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^ saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^ saes_table[3][BYTE(x[2], 3)];
cx = _mm_load_si128((__m128i*)k);
_mm_store_si128((__m128i*) &l[idx & MASK], _mm_xor_si128(bx, cx));
const uint8_t tmp = reinterpret_cast<const uint8_t*>(&l[idx & MASK])[11];
static const uint32_t table = 0x75310;
const uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l[idx & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx = EXTRACT64(cx);
bx = cx;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l[idx & MASK])[0];
ch = ((uint64_t*) &l[idx & MASK])[1];
lo = __umul128(idx, cl, &hi);
al += hi;
ah += lo;
ah ^= tweak1_2;
((uint64_t*) &l[idx & MASK])[0] = al;
((uint64_t*) &l[idx & MASK])[1] = ah;
ah ^= tweak1_2;
((uint64_t*)&l[idx & MASK])[1] ^= ((uint64_t*)&l[idx & MASK])[0];
ah ^= ch;
al ^= cl;
idx = al;
int64_t n = ((int64_t*)&l[idx & MASK])[0];
int32_t d = ((int32_t*)&l[idx & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l[idx & MASK])[0] = n ^ q;
idx = d ^ q;
}
#undef BYTE
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l, (__m128i*) h);
keccakf(h, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
class CryptoNightMultiHash<ITERATIONS, INDEX_SHIFT, MEM, MASK, SOFT_AES, 2>
{
public:
inline static void hash(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
inline static void hashPowV2(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
inline static void hashPowV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
// double
inline static void hashPowV3(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx10 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
__m128i bx01 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
#if defined(__x86_64__) || defined(_M_AMD64)
__m128i division_result_xmm = _mm_unpacklo_epi64(_mm_cvtsi64_si128(h0[12]), _mm_cvtsi64_si128(h1[12]));
__m128i sqrt_result_xmm = _mm_unpacklo_epi64(_mm_cvtsi64_si128(h0[13]), _mm_cvtsi64_si128(h1[13]));
#else
__m128i division_result_xmm0 = _mm_cvtsi64_si128(h0[12]);
__m128i division_result_xmm1 = _mm_cvtsi64_si128(h1[12]);
uint64_t sqrt_result0 = h0[13];
uint64_t sqrt_result1 = h1[13];
#endif
SET_ROUNDING_MODE_UP()
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0);
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1);
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
}
SHUFFLE_PHASE_1(l0, (idx0 & MASK), bx00, bx10, ax0)
SHUFFLE_PHASE_1(l1, (idx1 & MASK), bx01, bx11, ax1)
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx01, cx1));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
#if defined(__x86_64__) || defined(_M_AMD64)
const uint64_t sqrt_result0 = _mm_cvtsi128_si64(sqrt_result_xmm);
cl ^= static_cast<uint64_t>(_mm_cvtsi128_si64(division_result_xmm)) ^ (sqrt_result0 << 32);
#else
INTEGER_MATH_V2(0, cl, cx0)
#endif
lo = __umul128(idx0, cl, &hi);
SHUFFLE_PHASE_2(l0, (idx0 & MASK), bx00, bx10, ax0, lo, hi)
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
bx10 = bx00;
bx00 = cx0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
#if defined(__x86_64__) || defined(_M_AMD64)
const uint64_t sqrt_result1 = _mm_cvtsi128_si64(_mm_srli_si128(sqrt_result_xmm, 8));
cl ^= static_cast<uint64_t>(_mm_cvtsi128_si64(_mm_srli_si128(division_result_xmm, 8))) ^ (sqrt_result1 << 32);
const __m128i sqrt_result2 = _mm_add_epi64(_mm_slli_epi64(sqrt_result_xmm, 1), _mm_unpacklo_epi64(cx0, cx1));
const uint32_t d0 = _mm_cvtsi128_si64(sqrt_result2) | 0x80000001UL;
const uint32_t d1 = _mm_cvtsi128_si64(_mm_srli_si128(sqrt_result2, 8)) | 0x80000001UL;
const uint64_t cx01 = _mm_cvtsi128_si64(_mm_srli_si128(cx0, 8));
const uint64_t cx11 = _mm_cvtsi128_si64(_mm_srli_si128(cx1, 8));
__m128d x = _mm_unpacklo_pd(_mm_cvtsi64_sd(_mm_setzero_pd(), (cx01 + 1) >> 1), _mm_cvtsi64_sd(_mm_setzero_pd(), (cx11 + 1) >> 1));
__m128d y = _mm_unpacklo_pd(_mm_cvtsi64_sd(_mm_setzero_pd(), d0), _mm_cvtsi64_sd(_mm_setzero_pd(), d1));
__m128d result = _mm_div_pd(x, y);
result = _mm_castsi128_pd(_mm_add_epi64(_mm_castpd_si128(result), _mm_set_epi64x(1ULL << 52, 1ULL << 52)));
uint64_t q0 = _mm_cvttsd_si64(result);
uint64_t q1 = _mm_cvttsd_si64(_mm_castsi128_pd(_mm_srli_si128(_mm_castpd_si128(result), 8)));
uint64_t r0 = cx01 - d0 * q0;
if (UNLIKELY(int64_t(r0) < 0))
{
--q0;
r0 += d0;
}
uint64_t r1 = cx11 - d1 * q1;
if (UNLIKELY(int64_t(r1) < 0))
{
--q1;
r1 += d1;
}
division_result_xmm = _mm_set_epi32(r1, q1, r0, q0);
__m128i sqrt_input = _mm_add_epi64(_mm_unpacklo_epi64(cx0, cx1), division_result_xmm);
x = _mm_castsi128_pd(_mm_add_epi64(_mm_srli_epi64(sqrt_input, 12), _mm_set_epi64x(1023ULL << 52, 1023ULL << 52)));
x = _mm_sqrt_pd(x);
r0 = static_cast<uint64_t>(_mm_cvtsi128_si64(_mm_castpd_si128(x)));
int_sqrt_v2_fixup(r0, _mm_cvtsi128_si64(sqrt_input));
r1 = static_cast<uint64_t>(_mm_cvtsi128_si64(_mm_srli_si128(_mm_castpd_si128(x), 8)));
int_sqrt_v2_fixup(r1, _mm_cvtsi128_si64(_mm_srli_si128(sqrt_input, 8)));
sqrt_result_xmm = _mm_set_epi64x(r1, r0);
#else
INTEGER_MATH_V2(1, cl, cx1)
#endif
lo = __umul128(idx1, cl, &hi);
SHUFFLE_PHASE_2(l1, (idx1 & MASK), bx01, bx11, ax1, lo, hi)
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
bx11 = bx01;
bx01 = cx1;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
// double asm
inline static void hashPowV3_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
#ifndef XMRIG_NO_ASM
cnv2_double_mainloop_sandybridge_asm(scratchPad[0], scratchPad[1]);
#endif
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
// double asm
inline static void hashPowFastV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
#ifndef XMRIG_NO_ASM
cn_fastv2_double_mainloop_sandybridge_asm(scratchPad[0], scratchPad[1]);
#endif
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
inline static void hashLiteTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = (~d) ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = (~d) ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
inline static void hashHeavyTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
union alignas(16) {
uint32_t k[4];
uint64_t v64[2];
};
alignas(16) uint32_t x[4];
#define BYTE(p, i) ((unsigned char*)&p)[i]
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
__m128i cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
const __m128i& key0 = _mm_set_epi64x(ah0, al0);
_mm_store_si128((__m128i*)k, key0);
cx0 = _mm_xor_si128(cx0, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i*)x, cx0);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^ saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^ saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^ saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^ saes_table[3][BYTE(x[2], 3)];
cx0 = _mm_load_si128((__m128i*)k);
const __m128i& key1 = _mm_set_epi64x(ah1, al1);
_mm_store_si128((__m128i*)k, key1);
cx1 = _mm_xor_si128(cx1, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i*)x, cx1);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^ saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^ saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^ saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^ saes_table[3][BYTE(x[2], 3)];
cx1 = _mm_load_si128((__m128i*)k);
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
bx0 = cx0;
bx1 = cx1;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
}
#undef BYTE
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
class CryptoNightMultiHash<ITERATIONS, INDEX_SHIFT, MEM, MASK, SOFT_AES, 3>
{
public:
inline static void hash(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
inline static void hashPowV2(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
inline static void hashPowV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
// triple
inline static void hashPowV3(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx01 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx02 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx10 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
__m128i bx12 = _mm_set_epi64x(h2[9] ^ h2[11], h2[8] ^ h2[10]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
SET_ROUNDING_MODE_UP();
__m128i division_result_xmm0 = _mm_cvtsi64_si128(h0[12]);
__m128i division_result_xmm1 = _mm_cvtsi64_si128(h1[12]);
__m128i division_result_xmm2 = _mm_cvtsi64_si128(h2[12]);
uint64_t sqrt_result0 = h0[13];
uint64_t sqrt_result1 = h1[13];
uint64_t sqrt_result2 = h2[13];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
const __m128i ax2 = _mm_set_epi64x(ah2, al2);
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0);
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1);
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], ax2);
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
cx2 = _mm_aesenc_si128(cx2, ax2);
}
SHUFFLE_PHASE_1(l0, (idx0&MASK), bx00, bx10, ax0)
SHUFFLE_PHASE_1(l1, (idx1&MASK), bx01, bx11, ax1)
SHUFFLE_PHASE_1(l2, (idx2&MASK), bx02, bx12, ax2)
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx01, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx02, cx2));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
INTEGER_MATH_V2(0, cl, cx0);
lo = __umul128(idx0, cl, &hi);
SHUFFLE_PHASE_2(l0, (idx0&MASK), bx00, bx10, ax0, lo, hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
bx10 = bx00;
bx00 = cx0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
INTEGER_MATH_V2(1, cl, cx1);
lo = __umul128(idx1, cl, &hi);
SHUFFLE_PHASE_2(l1, (idx1&MASK), bx01, bx11, ax1, lo, hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
bx11 = bx01;
bx01 = cx1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
INTEGER_MATH_V2(2, cl, cx2);
lo = __umul128(idx2, cl, &hi);
SHUFFLE_PHASE_2(l2, (idx2&MASK), bx02, bx12, ax2, lo, hi)
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
bx12 = bx02;
bx02 = cx2;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
inline static void hashPowV3_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashPowFastV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashLiteTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
n = ((int64_t*)&l2[idx2 & MASK])[0];
d = ((int32_t*)&l2[idx2 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l2[idx2 & MASK])[0] = n ^ q;
idx2 = d ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = (~d) ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = (~d) ^ q;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
n = ((int64_t*)&l2[idx2 & MASK])[0];
d = ((int32_t*)&l2[idx2 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l2[idx2 & MASK])[0] = n ^ q;
idx2 = (~d) ^ q;
}
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
inline static void hashHeavyTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
union alignas(16) {
uint32_t k[4];
uint64_t v64[2];
};
alignas(16) uint32_t x[4];
#define BYTE(p, i) ((unsigned char*)&p)[i]
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
__m128i cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
__m128i cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
const __m128i& key0 = _mm_set_epi64x(ah0, al0);
_mm_store_si128((__m128i*)k, key0);
cx0 = _mm_xor_si128(cx0, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i*)x, cx0);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^ saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^ saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^ saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^ saes_table[3][BYTE(x[2], 3)];
cx0 = _mm_load_si128((__m128i*)k);
const __m128i& key1 = _mm_set_epi64x(ah1, al1);
_mm_store_si128((__m128i*)k, key1);
cx1 = _mm_xor_si128(cx1, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i*)x, cx1);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^ saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^ saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^ saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^ saes_table[3][BYTE(x[2], 3)];
cx1 = _mm_load_si128((__m128i*)k);
const __m128i& key2 = _mm_set_epi64x(ah2, al2);
_mm_store_si128((__m128i*)k, key2);
cx2 = _mm_xor_si128(cx2, _mm_cmpeq_epi32(_mm_setzero_si128(), _mm_setzero_si128()));
_mm_store_si128((__m128i*)x, cx2);
k[0] ^= saes_table[0][BYTE(x[0], 0)] ^ saes_table[1][BYTE(x[1], 1)] ^ saes_table[2][BYTE(x[2], 2)] ^ saes_table[3][BYTE(x[3], 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(x[1], 0)] ^ saes_table[1][BYTE(x[2], 1)] ^ saes_table[2][BYTE(x[3], 2)] ^ saes_table[3][BYTE(x[0], 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(x[2], 0)] ^ saes_table[1][BYTE(x[3], 1)] ^ saes_table[2][BYTE(x[0], 2)] ^ saes_table[3][BYTE(x[1], 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(x[3], 0)] ^ saes_table[1][BYTE(x[0], 1)] ^ saes_table[2][BYTE(x[1], 2)] ^ saes_table[3][BYTE(x[2], 3)];
cx2 = _mm_load_si128((__m128i*)k);
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
idx0 = d ^ q;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
n = ((int64_t*)&l1[idx1 & MASK])[0];
d = ((int32_t*)&l1[idx1 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
idx1 = d ^ q;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
n = ((int64_t*)&l2[idx2 & MASK])[0];
d = ((int32_t*)&l2[idx2 & MASK])[2];
q = n / (d | 0x5);
((int64_t*)&l2[idx2 & MASK])[0] = n ^ q;
idx2 = d ^ q;
}
#undef BYTE
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad_heavy<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
class CryptoNightMultiHash<ITERATIONS, INDEX_SHIFT, MEM, MASK, SOFT_AES, 4>
{
public:
inline static void hash(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
}
inline static void hashPowV2(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
uint64_t tweak1_2_3 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 3 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[3]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l3[idx3 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
ah3 ^= tweak1_2_3;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= tweak1_2_3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
}
inline static void hashPowV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
// quadruple
inline static void hashPowV3(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx01 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx02 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx03 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx10 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
__m128i bx12 = _mm_set_epi64x(h2[9] ^ h2[11], h2[8] ^ h2[10]);
__m128i bx13 = _mm_set_epi64x(h3[9] ^ h3[11], h3[8] ^ h3[10]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
SET_ROUNDING_MODE_UP();
__m128i division_result_xmm0 = _mm_cvtsi64_si128(h0[12]);
__m128i division_result_xmm1 = _mm_cvtsi64_si128(h1[12]);
__m128i division_result_xmm2 = _mm_cvtsi64_si128(h2[12]);
__m128i division_result_xmm3 = _mm_cvtsi64_si128(h3[12]);
uint64_t sqrt_result0 = h0[13];
uint64_t sqrt_result1 = h1[13];
uint64_t sqrt_result2 = h2[13];
uint64_t sqrt_result3 = h3[13];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
const __m128i ax2 = _mm_set_epi64x(ah2, al2);
const __m128i ax3 = _mm_set_epi64x(ah3, al3);
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0);
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1);
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], ax2);
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], ax3);
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
cx2 = _mm_aesenc_si128(cx2, ax2);
cx3 = _mm_aesenc_si128(cx3, ax3);
}
SHUFFLE_PHASE_1(l0, (idx0&MASK), bx00, bx10, ax0)
SHUFFLE_PHASE_1(l1, (idx1&MASK), bx01, bx11, ax1)
SHUFFLE_PHASE_1(l2, (idx2&MASK), bx02, bx12, ax2)
SHUFFLE_PHASE_1(l3, (idx3&MASK), bx03, bx13, ax3)
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx01, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx02, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx03, cx3));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
INTEGER_MATH_V2(0, cl, cx0);
lo = __umul128(idx0, cl, &hi);
SHUFFLE_PHASE_2(l0, (idx0&MASK), bx00, bx10, ax0, lo, hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
bx10 = bx00;
bx00 = cx0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
INTEGER_MATH_V2(1, cl, cx1);
lo = __umul128(idx1, cl, &hi);
SHUFFLE_PHASE_2(l1, (idx1&MASK), bx01, bx11, ax1, lo, hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
bx11 = bx01;
bx01 = cx1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
INTEGER_MATH_V2(2, cl, cx2);
lo = __umul128(idx2, cl, &hi);
SHUFFLE_PHASE_2(l2, (idx2&MASK), bx02, bx12, ax2, lo, hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
bx12 = bx02;
bx02 = cx2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
INTEGER_MATH_V2(3, cl, cx3);
lo = __umul128(idx3, cl, &hi);
SHUFFLE_PHASE_2(l3, (idx3&MASK), bx03, bx13, ax3, lo, hi);
al3 += hi;
ah3 += lo;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
bx13 = bx03;
bx03 = cx3;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
}
inline static void hashPowV3_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashPowFastV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashLiteTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
uint64_t tweak1_2_3 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 3 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[3]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l3[idx3 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
ah3 ^= tweak1_2_3;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= tweak1_2_3;
((uint64_t*)&l3[idx3 & MASK])[1] ^= ((uint64_t*)&l3[idx3 & MASK])[0];
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
// not supported
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
// not supported
}
inline static void hashHeavyTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
// not supported
}
};
template<size_t ITERATIONS, size_t INDEX_SHIFT, size_t MEM, size_t MASK, bool SOFT_AES>
class CryptoNightMultiHash<ITERATIONS, INDEX_SHIFT, MEM, MASK, SOFT_AES, 5>
{
public:
inline static void hash(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
keccak((const uint8_t*) input + 4 * size, (int) size, scratchPad[4]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
const uint8_t* l4 = scratchPad[4]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
uint64_t* h4 = reinterpret_cast<uint64_t*>(scratchPad[4]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t al4 = h4[0] ^h4[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
uint64_t ah4 = h4[1] ^h4[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
uint64_t idx4 = h4[0] ^h4[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
__m128i cx4;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
cx4 = _mm_aesenc_si128(cx4, _mm_set_epi64x(ah4, al4));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
idx4 = EXTRACT64(cx4);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
bx4 = cx4;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
lo = __umul128(idx4, cl, &hi);
al4 += hi;
ah4 += lo;
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
ah4 ^= ch;
al4 ^= cl;
idx4 = al4;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
keccakf(h4, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
extra_hashes[scratchPad[4]->state[0] & 3](scratchPad[4]->state, 200, output + 128);
}
inline static void hashPowV2(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
keccak((const uint8_t*) input + 4 * size, (int) size, scratchPad[4]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
uint64_t tweak1_2_3 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 3 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[3]->state) + 24));
uint64_t tweak1_2_4 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 4 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[4]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
const uint8_t* l4 = scratchPad[4]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
uint64_t* h4 = reinterpret_cast<uint64_t*>(scratchPad[4]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t al4 = h4[0] ^h4[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
uint64_t ah4 = h4[1] ^h4[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
uint64_t idx4 = h4[0] ^h4[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
__m128i cx4;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
cx4 = _mm_aesenc_si128(cx4, _mm_set_epi64x(ah4, al4));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l3[idx3 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l4[idx4 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l4[idx4 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
idx4 = EXTRACT64(cx4);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
bx4 = cx4;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
ah3 ^= tweak1_2_3;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= tweak1_2_3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
lo = __umul128(idx4, cl, &hi);
al4 += hi;
ah4 += lo;
ah4 ^= tweak1_2_4;
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
ah4 ^= tweak1_2_4;
ah4 ^= ch;
al4 ^= cl;
idx4 = al4;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
keccakf(h4, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
extra_hashes[scratchPad[4]->state[0] & 3](scratchPad[4]->state, 200, output + 128);
}
inline static void hashPowV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
// quintuple
inline static void hashPowV3(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
keccak((const uint8_t*) input + 4 * size, (int) size, scratchPad[4]->state, 200);
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
const uint8_t* l4 = scratchPad[4]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
uint64_t* h4 = reinterpret_cast<uint64_t*>(scratchPad[4]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t al4 = h4[0] ^h4[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
uint64_t ah4 = h4[1] ^h4[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx01 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx02 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx03 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx04 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
__m128i bx10 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
__m128i bx12 = _mm_set_epi64x(h2[9] ^ h2[11], h2[8] ^ h2[10]);
__m128i bx13 = _mm_set_epi64x(h3[9] ^ h3[11], h3[8] ^ h3[10]);
__m128i bx14 = _mm_set_epi64x(h4[9] ^ h4[11], h4[8] ^ h4[10]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
uint64_t idx4 = h4[0] ^h4[4];
SET_ROUNDING_MODE_UP();
__m128i division_result_xmm0 = _mm_cvtsi64_si128(h0[12]);
__m128i division_result_xmm1 = _mm_cvtsi64_si128(h1[12]);
__m128i division_result_xmm2 = _mm_cvtsi64_si128(h2[12]);
__m128i division_result_xmm3 = _mm_cvtsi64_si128(h3[12]);
__m128i division_result_xmm4 = _mm_cvtsi64_si128(h4[12]);
uint64_t sqrt_result0 = h0[13];
uint64_t sqrt_result1 = h1[13];
uint64_t sqrt_result2 = h2[13];
uint64_t sqrt_result3 = h3[13];
uint64_t sqrt_result4 = h4[13];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
__m128i cx4;
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
const __m128i ax2 = _mm_set_epi64x(ah2, al2);
const __m128i ax3 = _mm_set_epi64x(ah3, al3);
const __m128i ax4 = _mm_set_epi64x(ah4, al4);
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], ax0);
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], ax1);
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], ax2);
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], ax3);
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], ax4);
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
cx2 = _mm_aesenc_si128(cx2, ax2);
cx3 = _mm_aesenc_si128(cx3, ax3);
cx4 = _mm_aesenc_si128(cx4, ax4);
}
SHUFFLE_PHASE_1(l0, (idx0&MASK), bx00, bx10, ax0)
SHUFFLE_PHASE_1(l1, (idx1&MASK), bx01, bx11, ax1)
SHUFFLE_PHASE_1(l2, (idx2&MASK), bx02, bx12, ax2)
SHUFFLE_PHASE_1(l3, (idx3&MASK), bx03, bx13, ax3)
SHUFFLE_PHASE_1(l4, (idx4&MASK), bx04, bx14, ax4)
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx01, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx02, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx03, cx3));
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx04, cx4));
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
idx4 = EXTRACT64(cx4);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
INTEGER_MATH_V2(0, cl, cx0);
lo = __umul128(idx0, cl, &hi);
SHUFFLE_PHASE_2(l0, (idx0&MASK), bx00, bx10, ax0, lo, hi);
al0 += hi;
ah0 += lo;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
bx10 = bx00;
bx00 = cx0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
INTEGER_MATH_V2(1, cl, cx1);
lo = __umul128(idx1, cl, &hi);
SHUFFLE_PHASE_2(l1, (idx1&MASK), bx01, bx11, ax1, lo, hi);
al1 += hi;
ah1 += lo;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
bx11 = bx01;
bx01 = cx1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
INTEGER_MATH_V2(2, cl, cx2);
lo = __umul128(idx2, cl, &hi);
SHUFFLE_PHASE_2(l2, (idx2&MASK), bx02, bx12, ax2, lo, hi);
al2 += hi;
ah2 += lo;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
bx12 = bx02;
bx02 = cx2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
INTEGER_MATH_V2(3, cl, cx3);
lo = __umul128(idx3, cl, &hi);
SHUFFLE_PHASE_2(l3, (idx3&MASK), bx03, bx13, ax3, lo, hi);
al3 += hi;
ah3 += lo;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
bx13 = bx03;
bx03 = cx3;
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
INTEGER_MATH_V2(4, cl, cx4);
lo = __umul128(idx4, cl, &hi);
SHUFFLE_PHASE_2(l4, (idx4&MASK), bx04, bx14, ax4, lo, hi);
al4 += hi;
ah4 += lo;
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
ah4 ^= ch;
al4 ^= cl;
idx4 = al4;
bx14 = bx04;
bx04 = cx4;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
keccakf(h4, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
extra_hashes[scratchPad[4]->state[0] & 3](scratchPad[4]->state, 200, output + 128);
}
inline static void hashPowV3_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashPowFastV2_asm(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad,
AsmOptimization asmOptimization)
{
// not supported
}
inline static void hashLiteTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
keccak((const uint8_t*) input, (int) size, scratchPad[0]->state, 200);
keccak((const uint8_t*) input + size, (int) size, scratchPad[1]->state, 200);
keccak((const uint8_t*) input + 2 * size, (int) size, scratchPad[2]->state, 200);
keccak((const uint8_t*) input + 3 * size, (int) size, scratchPad[3]->state, 200);
keccak((const uint8_t*) input + 4 * size, (int) size, scratchPad[4]->state, 200);
uint64_t tweak1_2_0 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[0]->state) + 24));
uint64_t tweak1_2_1 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[1]->state) + 24));
uint64_t tweak1_2_2 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 2 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[2]->state) + 24));
uint64_t tweak1_2_3 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 3 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[3]->state) + 24));
uint64_t tweak1_2_4 = (*reinterpret_cast<const uint64_t*>(reinterpret_cast<const uint8_t*>(input) + 35 + 4 * size) ^
*(reinterpret_cast<const uint64_t*>(scratchPad[4]->state) + 24));
const uint8_t* l0 = scratchPad[0]->memory;
const uint8_t* l1 = scratchPad[1]->memory;
const uint8_t* l2 = scratchPad[2]->memory;
const uint8_t* l3 = scratchPad[3]->memory;
const uint8_t* l4 = scratchPad[4]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(scratchPad[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(scratchPad[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(scratchPad[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(scratchPad[3]->state);
uint64_t* h4 = reinterpret_cast<uint64_t*>(scratchPad[4]->state);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h0, (__m128i*) l0);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h1, (__m128i*) l1);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h2, (__m128i*) l2);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h3, (__m128i*) l3);
cn_explode_scratchpad<MEM, SOFT_AES>((__m128i*) h4, (__m128i*) l4);
uint64_t al0 = h0[0] ^h0[4];
uint64_t al1 = h1[0] ^h1[4];
uint64_t al2 = h2[0] ^h2[4];
uint64_t al3 = h3[0] ^h3[4];
uint64_t al4 = h4[0] ^h4[4];
uint64_t ah0 = h0[1] ^h0[5];
uint64_t ah1 = h1[1] ^h1[5];
uint64_t ah2 = h2[1] ^h2[5];
uint64_t ah3 = h3[1] ^h3[5];
uint64_t ah4 = h4[1] ^h4[5];
__m128i bx0 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx1 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx2 = _mm_set_epi64x(h2[3] ^ h2[7], h2[2] ^ h2[6]);
__m128i bx3 = _mm_set_epi64x(h3[3] ^ h3[7], h3[2] ^ h3[6]);
__m128i bx4 = _mm_set_epi64x(h4[3] ^ h4[7], h4[2] ^ h4[6]);
uint64_t idx0 = h0[0] ^h0[4];
uint64_t idx1 = h1[0] ^h1[4];
uint64_t idx2 = h2[0] ^h2[4];
uint64_t idx3 = h3[0] ^h3[4];
uint64_t idx4 = h4[0] ^h4[4];
for (size_t i = 0; i < ITERATIONS; i++) {
__m128i cx0;
__m128i cx1;
__m128i cx2;
__m128i cx3;
__m128i cx4;
if (SOFT_AES) {
cx0 = soft_aesenc((uint32_t*)&l0[idx0 & MASK], _mm_set_epi64x(ah0, al0));
cx1 = soft_aesenc((uint32_t*)&l1[idx1 & MASK], _mm_set_epi64x(ah1, al1));
cx2 = soft_aesenc((uint32_t*)&l2[idx2 & MASK], _mm_set_epi64x(ah2, al2));
cx3 = soft_aesenc((uint32_t*)&l3[idx3 & MASK], _mm_set_epi64x(ah3, al3));
cx4 = soft_aesenc((uint32_t*)&l4[idx4 & MASK], _mm_set_epi64x(ah4, al4));
} else {
cx0 = _mm_load_si128((__m128i*) &l0[idx0 & MASK]);
cx1 = _mm_load_si128((__m128i*) &l1[idx1 & MASK]);
cx2 = _mm_load_si128((__m128i*) &l2[idx2 & MASK]);
cx3 = _mm_load_si128((__m128i*) &l3[idx3 & MASK]);
cx4 = _mm_load_si128((__m128i*) &l4[idx4 & MASK]);
cx0 = _mm_aesenc_si128(cx0, _mm_set_epi64x(ah0, al0));
cx1 = _mm_aesenc_si128(cx1, _mm_set_epi64x(ah1, al1));
cx2 = _mm_aesenc_si128(cx2, _mm_set_epi64x(ah2, al2));
cx3 = _mm_aesenc_si128(cx3, _mm_set_epi64x(ah3, al3));
cx4 = _mm_aesenc_si128(cx4, _mm_set_epi64x(ah4, al4));
}
_mm_store_si128((__m128i*) &l0[idx0 & MASK], _mm_xor_si128(bx0, cx0));
_mm_store_si128((__m128i*) &l1[idx1 & MASK], _mm_xor_si128(bx1, cx1));
_mm_store_si128((__m128i*) &l2[idx2 & MASK], _mm_xor_si128(bx2, cx2));
_mm_store_si128((__m128i*) &l3[idx3 & MASK], _mm_xor_si128(bx3, cx3));
_mm_store_si128((__m128i*) &l4[idx4 & MASK], _mm_xor_si128(bx4, cx4));
static const uint32_t table = 0x75310;
uint8_t tmp = reinterpret_cast<const uint8_t*>(&l0[idx0 & MASK])[11];
uint8_t index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l0[idx0 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l1[idx1 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l1[idx1 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l2[idx2 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l2[idx2 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l3[idx3 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l3[idx3 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
tmp = reinterpret_cast<const uint8_t*>(&l4[idx4 & MASK])[11];
index = (((tmp >> INDEX_SHIFT) & 6) | (tmp & 1)) << 1;
((uint8_t*)(&l4[idx4 & MASK]))[11] = tmp ^ ((table >> index) & 0x30);
idx0 = EXTRACT64(cx0);
idx1 = EXTRACT64(cx1);
idx2 = EXTRACT64(cx2);
idx3 = EXTRACT64(cx3);
idx4 = EXTRACT64(cx4);
bx0 = cx0;
bx1 = cx1;
bx2 = cx2;
bx3 = cx3;
bx4 = cx4;
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
lo = __umul128(idx0, cl, &hi);
al0 += hi;
ah0 += lo;
ah0 ^= tweak1_2_0;
((uint64_t*) &l0[idx0 & MASK])[0] = al0;
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
ah0 ^= tweak1_2_0;
((uint64_t*)&l0[idx0 & MASK])[1] ^= ((uint64_t*)&l0[idx0 & MASK])[0];
ah0 ^= ch;
al0 ^= cl;
idx0 = al0;
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
lo = __umul128(idx1, cl, &hi);
al1 += hi;
ah1 += lo;
ah1 ^= tweak1_2_1;
((uint64_t*) &l1[idx1 & MASK])[0] = al1;
((uint64_t*) &l1[idx1 & MASK])[1] = ah1;
ah1 ^= tweak1_2_1;
((uint64_t*)&l1[idx1 & MASK])[1] ^= ((uint64_t*)&l1[idx1 & MASK])[0];
ah1 ^= ch;
al1 ^= cl;
idx1 = al1;
cl = ((uint64_t*) &l2[idx2 & MASK])[0];
ch = ((uint64_t*) &l2[idx2 & MASK])[1];
lo = __umul128(idx2, cl, &hi);
al2 += hi;
ah2 += lo;
ah2 ^= tweak1_2_2;
((uint64_t*) &l2[idx2 & MASK])[0] = al2;
((uint64_t*) &l2[idx2 & MASK])[1] = ah2;
ah2 ^= tweak1_2_2;
((uint64_t*)&l2[idx2 & MASK])[1] ^= ((uint64_t*)&l2[idx2 & MASK])[0];
ah2 ^= ch;
al2 ^= cl;
idx2 = al2;
cl = ((uint64_t*) &l3[idx3 & MASK])[0];
ch = ((uint64_t*) &l3[idx3 & MASK])[1];
lo = __umul128(idx3, cl, &hi);
al3 += hi;
ah3 += lo;
ah3 ^= tweak1_2_3;
((uint64_t*) &l3[idx3 & MASK])[0] = al3;
((uint64_t*) &l3[idx3 & MASK])[1] = ah3;
ah3 ^= tweak1_2_3;
((uint64_t*)&l3[idx3 & MASK])[1] ^= ((uint64_t*)&l3[idx3 & MASK])[0];
ah3 ^= ch;
al3 ^= cl;
idx3 = al3;
cl = ((uint64_t*) &l4[idx4 & MASK])[0];
ch = ((uint64_t*) &l4[idx4 & MASK])[1];
lo = __umul128(idx4, cl, &hi);
al4 += hi;
ah4 += lo;
ah4 ^= tweak1_2_4;
((uint64_t*) &l4[idx4 & MASK])[0] = al4;
((uint64_t*) &l4[idx4 & MASK])[1] = ah4;
ah4 ^= tweak1_2_4;
((uint64_t*)&l4[idx4 & MASK])[1] ^= ((uint64_t*)&l4[idx4 & MASK])[0];
ah4 ^= ch;
al4 ^= cl;
idx4 = al4;
}
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l0, (__m128i*) h0);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l1, (__m128i*) h1);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l2, (__m128i*) h2);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l3, (__m128i*) h3);
cn_implode_scratchpad<MEM, SOFT_AES>((__m128i*) l4, (__m128i*) h4);
keccakf(h0, 24);
keccakf(h1, 24);
keccakf(h2, 24);
keccakf(h3, 24);
keccakf(h4, 24);
extra_hashes[scratchPad[0]->state[0] & 3](scratchPad[0]->state, 200, output);
extra_hashes[scratchPad[1]->state[0] & 3](scratchPad[1]->state, 200, output + 32);
extra_hashes[scratchPad[2]->state[0] & 3](scratchPad[2]->state, 200, output + 64);
extra_hashes[scratchPad[3]->state[0] & 3](scratchPad[3]->state, 200, output + 96);
extra_hashes[scratchPad[4]->state[0] & 3](scratchPad[4]->state, 200, output + 128);
}
inline static void hashHeavy(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
// not supported
}
inline static void hashHeavyHaven(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
// not supported
}
inline static void hashHeavyTube(const uint8_t* __restrict__ input,
size_t size,
uint8_t* __restrict__ output,
ScratchPad** __restrict__ scratchPad)
{
// not supported
}
};
#endif /* __CRYPTONIGHT_X86_H__ */