REDACTED-rig/src/backend/cpu/platform/HwlocCpuInfo.cpp
2019-08-17 05:22:09 +07:00

337 lines
9.1 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2019 XMRig <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef XMRIG_HWLOC_DEBUG
# include <uv.h>
#endif
#include <algorithm>
#include <hwloc.h>
#if HWLOC_API_VERSION < 0x00010b00
# define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
# define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
#endif
#include "backend/cpu/platform/HwlocCpuInfo.h"
#include "base/io/log/Log.h"
namespace xmrig {
std::vector<uint32_t> HwlocCpuInfo::m_nodeIndexes;
uint32_t HwlocCpuInfo::m_features = 0;
static inline bool isCacheObject(hwloc_obj_t obj)
{
# if HWLOC_API_VERSION >= 0x20000
return hwloc_obj_type_is_cache(obj->type);
# else
return obj->type == HWLOC_OBJ_CACHE;
# endif
}
template <typename func>
static inline void findCache(hwloc_obj_t obj, unsigned min, unsigned max, func lambda)
{
for (size_t i = 0; i < obj->arity; i++) {
if (isCacheObject(obj->children[i])) {
const unsigned depth = obj->children[i]->attr->cache.depth;
if (depth < min || depth > max) {
continue;
}
lambda(obj->children[i]);
}
findCache(obj->children[i], min, max, lambda);
}
}
template <typename func>
static inline void findByType(hwloc_obj_t obj, hwloc_obj_type_t type, func lambda)
{
for (size_t i = 0; i < obj->arity; i++) {
if (obj->children[i]->type == type) {
lambda(obj->children[i]);
}
else {
findByType(obj->children[i], type, lambda);
}
}
}
static inline std::vector<hwloc_obj_t> findByType(hwloc_obj_t obj, hwloc_obj_type_t type)
{
std::vector<hwloc_obj_t> out;
findByType(obj, type, [&out](hwloc_obj_t found) { out.emplace_back(found); });
return out;
}
static inline size_t countByType(hwloc_topology_t topology, hwloc_obj_type_t type)
{
const int count = hwloc_get_nbobjs_by_type(topology, type);
return count > 0 ? static_cast<size_t>(count) : 0;
}
static inline size_t countByType(hwloc_obj_t obj, hwloc_obj_type_t type)
{
size_t count = 0;
findByType(obj, type, [&count](hwloc_obj_t) { count++; });
return count;
}
static inline bool isCacheExclusive(hwloc_obj_t obj)
{
const char *value = hwloc_obj_get_info_by_name(obj, "Inclusive");
return value == nullptr || value[0] != '1';
}
} // namespace xmrig
xmrig::HwlocCpuInfo::HwlocCpuInfo() : BasicCpuInfo(),
m_backend(),
m_cache()
{
m_threads = 0;
hwloc_topology_init(&m_topology);
hwloc_topology_load(m_topology);
# ifdef XMRIG_HWLOC_DEBUG
# if defined(UV_VERSION_HEX) && UV_VERSION_HEX >= 0x010c00
{
char env[520] = { 0 };
size_t size = sizeof(env);
if (uv_os_getenv("HWLOC_XMLFILE", env, &size) == 0) {
printf("use HWLOC XML file: \"%s\"\n", env);
}
}
# endif
const std::vector<hwloc_obj_t> packages = findByType(hwloc_get_root_obj(m_topology), HWLOC_OBJ_PACKAGE);
if (packages.size()) {
const char *value = hwloc_obj_get_info_by_name(packages[0], "CPUModel");
if (value) {
strncpy(m_brand, value, 64);
}
}
# endif
hwloc_obj_t root = hwloc_get_root_obj(m_topology);
# if HWLOC_API_VERSION >= 0x00010b00
const char *version = hwloc_obj_get_info_by_name(root, "hwlocVersion");
if (version) {
snprintf(m_backend, sizeof m_backend, "hwloc/%s", version);
}
else
# endif
{
snprintf(m_backend, sizeof m_backend, "hwloc/%d.%d.%d",
(HWLOC_API_VERSION>>16)&0x000000ff,
(HWLOC_API_VERSION>>8 )&0x000000ff,
(HWLOC_API_VERSION )&0x000000ff
);
}
findCache(root, 2, 3, [this](hwloc_obj_t found) { this->m_cache[found->attr->cache.depth] += found->attr->cache.size; });
m_threads = countByType(m_topology, HWLOC_OBJ_PU);
m_cores = countByType(m_topology, HWLOC_OBJ_CORE);
m_nodes = std::max<size_t>(countByType(m_topology, HWLOC_OBJ_NUMANODE), 1);
m_packages = countByType(m_topology, HWLOC_OBJ_PACKAGE);
if (m_nodes > 1) {
if (hwloc_topology_get_support(m_topology)->membind->set_thisthread_membind) {
m_features |= SET_THISTHREAD_MEMBIND;
}
m_nodeIndexes.reserve(m_nodes);
hwloc_obj_t node = nullptr;
while ((node = hwloc_get_next_obj_by_type(m_topology, HWLOC_OBJ_NUMANODE, node)) != nullptr) {
m_nodeIndexes.emplace_back(node->os_index);
}
}
}
xmrig::HwlocCpuInfo::~HwlocCpuInfo()
{
hwloc_topology_destroy(m_topology);
}
xmrig::CpuThreads xmrig::HwlocCpuInfo::threads(const Algorithm &algorithm) const
{
if (L2() == 0 && L3() == 0) {
return BasicCpuInfo::threads(algorithm);
}
const unsigned depth = L3() > 0 ? 3 : 2;
CpuThreads threads;
threads.reserve(m_threads);
std::vector<hwloc_obj_t> caches;
caches.reserve(16);
findCache(hwloc_get_root_obj(m_topology), depth, depth, [&caches](hwloc_obj_t found) { caches.emplace_back(found); });
for (hwloc_obj_t cache : caches) {
processTopLevelCache(cache, algorithm, threads);
}
if (threads.isEmpty()) {
LOG_WARN("hwloc auto configuration for algorithm \"%s\" failed.", algorithm.shortName());
return BasicCpuInfo::threads(algorithm);
}
return threads;
}
void xmrig::HwlocCpuInfo::processTopLevelCache(hwloc_obj_t cache, const Algorithm &algorithm, CpuThreads &threads) const
{
constexpr size_t oneMiB = 1024u * 1024u;
size_t PUs = countByType(cache, HWLOC_OBJ_PU);
if (PUs == 0) {
return;
}
std::vector<hwloc_obj_t> cores;
cores.reserve(m_cores);
findByType(cache, HWLOC_OBJ_CORE, [&cores](hwloc_obj_t found) { cores.emplace_back(found); });
size_t L3 = cache->attr->cache.size;
const bool L3_exclusive = isCacheExclusive(cache);
size_t L2 = 0;
int L2_associativity = 0;
size_t extra = 0;
const size_t scratchpad = algorithm.l3();
uint32_t intensity = algorithm.maxIntensity() == 1 ? 0 : 1;
if (cache->attr->cache.depth == 3) {
for (size_t i = 0; i < cache->arity; ++i) {
hwloc_obj_t l2 = cache->children[i];
if (!isCacheObject(l2) || l2->attr == nullptr) {
continue;
}
L2 += l2->attr->cache.size;
L2_associativity = l2->attr->cache.associativity;
if (L3_exclusive && l2->attr->cache.size >= scratchpad) {
extra += scratchpad;
}
}
}
if (scratchpad == 2 * oneMiB) {
if (L2 && (cores.size() * oneMiB) == L2 && L2_associativity == 16 && L3 >= L2) {
L3 = L2;
extra = L2;
}
}
size_t cacheHashes = ((L3 + extra) + (scratchpad / 2)) / scratchpad;
# ifdef XMRIG_ALGO_CN_PICO
if (algorithm == Algorithm::CN_PICO_0 && (cacheHashes / PUs) >= 2) {
intensity = 2;
}
# endif
# ifdef XMRIG_ALGO_CN_GPU
if (algorithm == Algorithm::CN_GPU) {
cacheHashes = PUs;
}
# endif
# ifdef XMRIG_ALGO_RANDOMX
if (extra == 0 && algorithm.l2() > 0) {
cacheHashes = std::min<size_t>(std::max<size_t>(L2 / algorithm.l2(), cores.size()), cacheHashes);
}
# endif
if (cacheHashes >= PUs) {
for (hwloc_obj_t core : cores) {
const std::vector<hwloc_obj_t> units = findByType(core, HWLOC_OBJ_PU);
for (hwloc_obj_t pu : units) {
threads.add(pu->os_index, intensity);
}
}
return;
}
size_t pu_id = 0;
while (cacheHashes > 0 && PUs > 0) {
bool allocated_pu = false;
for (hwloc_obj_t core : cores) {
const std::vector<hwloc_obj_t> units = findByType(core, HWLOC_OBJ_PU);
if (units.size() <= pu_id) {
continue;
}
cacheHashes--;
PUs--;
allocated_pu = true;
threads.add(units[pu_id]->os_index, intensity);
if (cacheHashes == 0) {
break;
}
}
if (!allocated_pu) {
break;
}
pu_id++;
}
}