REDACTED-rig/src/crypto/astrobwt/AstroBWT.cpp
2020-05-27 16:19:57 +02:00

259 lines
7.6 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright 2018-2019 tevador <tevador@gmail.com>
* Copyright 2000 Transmeta Corporation <https://github.com/intel/msr-tools>
* Copyright 2004-2008 H. Peter Anvin <https://github.com/intel/msr-tools>
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "crypto/astrobwt/AstroBWT.h"
#include "backend/cpu/Cpu.h"
#include "base/crypto/sha3.h"
#include "crypto/cn/CryptoNight.h"
#include <limits>
constexpr int STAGE1_SIZE = 147253;
constexpr int ALLOCATION_SIZE = (STAGE1_SIZE + 1048576) + (128 - (STAGE1_SIZE & 63));
constexpr int COUNTING_SORT_BITS = 10;
constexpr int COUNTING_SORT_SIZE = 1 << COUNTING_SORT_BITS;
static bool astrobwtInitialized = false;
#ifdef ASTROBWT_AVX2
static bool hasAVX2 = false;
extern "C"
#ifndef _MSC_VER
__attribute__((ms_abi))
#endif
void SHA3_256_AVX2_ASM(const void* in, size_t inBytes, void* out);
#endif
#ifdef _MSC_VER
#include <stdlib.h>
#define bswap_64(x) _byteswap_uint64(x)
#elif defined __GNUC__
#define bswap_64(x) __builtin_bswap64(x)
#else
#include <byteswap.h>
#endif
#ifdef XMRIG_ARM
extern "C" {
#include "salsa20_ref/ecrypt-sync.h"
}
static void Salsa20_XORKeyStream(const void* key, void* output, size_t size)
{
uint8_t iv[8] = {};
ECRYPT_ctx ctx;
ECRYPT_keysetup(&ctx, static_cast<const uint8_t*>(key), 256, 64);
ECRYPT_ivsetup(&ctx, iv);
ECRYPT_keystream_bytes(&ctx, static_cast<uint8_t*>(output), size);
memset(static_cast<uint8_t*>(output) - 16, 0, 16);
memset(static_cast<uint8_t*>(output) + size, 0, 16);
}
#else
#include "Salsa20.hpp"
static void Salsa20_XORKeyStream(const void* key, void* output, size_t size)
{
const uint64_t iv = 0;
ZeroTier::Salsa20 s(key, &iv);
s.XORKeyStream(output, size);
memset(static_cast<uint8_t*>(output) - 16, 0, 16);
memset(static_cast<uint8_t*>(output) + size, 0, 16);
}
#endif
void sort_indices(int N, const uint8_t* v, uint64_t* indices, uint64_t* tmp_indices)
{
uint32_t counters[2][COUNTING_SORT_SIZE] = {};
for (int i = 0; i < N; ++i)
{
const uint64_t k = bswap_64(*reinterpret_cast<const uint64_t*>(v + i));
++counters[0][(k >> (64 - COUNTING_SORT_BITS * 2)) & (COUNTING_SORT_SIZE - 1)];
++counters[1][k >> (64 - COUNTING_SORT_BITS)];
}
uint32_t prev[2] = { counters[0][0], counters[1][0] };
counters[0][0] = prev[0] - 1;
counters[1][0] = prev[1] - 1;
for (int i = 1; i < COUNTING_SORT_SIZE; ++i)
{
const uint32_t cur[2] = { counters[0][i] + prev[0], counters[1][i] + prev[1] };
counters[0][i] = cur[0] - 1;
counters[1][i] = cur[1] - 1;
prev[0] = cur[0];
prev[1] = cur[1];
}
for (int i = N - 1; i >= 0; --i)
{
const uint64_t k = bswap_64(*reinterpret_cast<const uint64_t*>(v + i));
tmp_indices[counters[0][(k >> (64 - COUNTING_SORT_BITS * 2)) & (COUNTING_SORT_SIZE - 1)]--] = (k & (static_cast<uint64_t>(-1) << 21)) | i;
}
for (int i = N - 1; i >= 0; --i)
{
const uint64_t data = tmp_indices[i];
indices[counters[1][data >> (64 - COUNTING_SORT_BITS)]--] = data;
}
auto smaller = [v](uint64_t a, uint64_t b)
{
const uint64_t value_a = a >> 21;
const uint64_t value_b = b >> 21;
if (value_a < value_b)
return true;
if (value_a > value_b)
return false;
const uint64_t data_a = bswap_64(*reinterpret_cast<const uint64_t*>(v + (a % (1 << 21)) + 5));
const uint64_t data_b = bswap_64(*reinterpret_cast<const uint64_t*>(v + (b % (1 << 21)) + 5));
return (data_a < data_b);
};
uint64_t prev_t = indices[0];
for (int i = 1; i < N; ++i)
{
uint64_t t = indices[i];
if (smaller(t, prev_t))
{
const uint64_t t2 = prev_t;
int j = i - 1;
do
{
indices[j + 1] = prev_t;
--j;
if (j < 0)
break;
prev_t = indices[j];
} while (smaller(t, prev_t));
indices[j + 1] = t;
t = t2;
}
prev_t = t;
}
}
bool xmrig::astrobwt::astrobwt_dero(const void* input_data, uint32_t input_size, void* scratchpad, uint8_t* output_hash, int stage2_max_size, bool avx2)
{
uint8_t key[32];
uint8_t* scratchpad_ptr = (uint8_t*)(scratchpad) + 64;
uint8_t* stage1_output = scratchpad_ptr;
uint8_t* stage2_output = scratchpad_ptr;
uint64_t* indices = (uint64_t*)(scratchpad_ptr + ALLOCATION_SIZE);
uint64_t* tmp_indices = (uint64_t*)(scratchpad_ptr + ALLOCATION_SIZE * 9);
uint8_t* stage1_result = (uint8_t*)(tmp_indices);
uint8_t* stage2_result = (uint8_t*)(tmp_indices);
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2)
SHA3_256_AVX2_ASM(input_data, input_size, key);
else
#endif
sha3_HashBuffer(256, SHA3_FLAGS_NONE, input_data, input_size, key, sizeof(key));
Salsa20_XORKeyStream(key, stage1_output, STAGE1_SIZE);
sort_indices(STAGE1_SIZE + 1, stage1_output, indices, tmp_indices);
{
const uint8_t* tmp = stage1_output - 1;
for (int i = 0; i <= STAGE1_SIZE; ++i)
stage1_result[i] = tmp[indices[i] & ((1 << 21) - 1)];
}
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2)
SHA3_256_AVX2_ASM(stage1_result, STAGE1_SIZE + 1, key);
else
#endif
sha3_HashBuffer(256, SHA3_FLAGS_NONE, stage1_result, STAGE1_SIZE + 1, key, sizeof(key));
const int stage2_size = STAGE1_SIZE + (*(uint32_t*)(key) & 0xfffff);
if (stage2_size > stage2_max_size)
return false;
Salsa20_XORKeyStream(key, stage2_output, stage2_size);
sort_indices(stage2_size + 1, stage2_output, indices, tmp_indices);
{
const uint8_t* tmp = stage2_output - 1;
int i = 0;
const int n = ((stage2_size + 1) / 4) * 4;
for (; i < n; i += 4)
{
stage2_result[i + 0] = tmp[indices[i + 0] & ((1 << 21) - 1)];
stage2_result[i + 1] = tmp[indices[i + 1] & ((1 << 21) - 1)];
stage2_result[i + 2] = tmp[indices[i + 2] & ((1 << 21) - 1)];
stage2_result[i + 3] = tmp[indices[i + 3] & ((1 << 21) - 1)];
}
for (; i <= stage2_size; ++i)
stage2_result[i] = tmp[indices[i] & ((1 << 21) - 1)];
}
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2)
SHA3_256_AVX2_ASM(stage2_result, stage2_size + 1, output_hash);
else
#endif
sha3_HashBuffer(256, SHA3_FLAGS_NONE, stage2_result, stage2_size + 1, output_hash, 32);
return true;
}
void xmrig::astrobwt::init()
{
if (!astrobwtInitialized) {
# ifdef ASTROBWT_AVX2
hasAVX2 = Cpu::info()->hasAVX2();
# endif
astrobwtInitialized = true;
}
}
template<>
void xmrig::astrobwt::single_hash<xmrig::Algorithm::ASTROBWT_DERO>(const uint8_t* input, size_t size, uint8_t* output, cryptonight_ctx** ctx, uint64_t)
{
astrobwt_dero(input, static_cast<uint32_t>(size), ctx[0]->memory, output, std::numeric_limits<int>::max(), true);
}