REDACTED-rig/src/backend/opencl/wrappers/OclDevice.cpp
2020-02-14 00:16:32 +07:00

230 lines
6.9 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "backend/opencl/wrappers/OclDevice.h"
#include "backend/opencl/OclGenerator.h"
#include "backend/opencl/OclThreads.h"
#include "backend/opencl/wrappers/OclLib.h"
#include "base/io/log/Log.h"
#include "crypto/cn/CnAlgo.h"
#include "crypto/common/Algorithm.h"
#include "rapidjson/document.h"
#ifdef XMRIG_FEATURE_ADL
# include "backend/opencl/wrappers/AdlLib.h"
#endif
#include <algorithm>
typedef union
{
struct { cl_uint type; cl_uint data[5]; } raw;
struct { cl_uint type; cl_char unused[17]; cl_char bus; cl_char device; cl_char function; } pcie;
} topology_amd;
namespace xmrig {
#ifdef XMRIG_ALGO_RANDOMX
extern bool ocl_generic_rx_generator(const OclDevice &device, const Algorithm &algorithm, OclThreads &threads);
#endif
#ifdef XMRIG_ALGO_CN_GPU
extern bool ocl_generic_cn_gpu_generator(const OclDevice &device, const Algorithm &algorithm, OclThreads &threads);
#endif
extern bool ocl_vega_cn_generator(const OclDevice &device, const Algorithm &algorithm, OclThreads &threads);
extern bool ocl_generic_cn_generator(const OclDevice &device, const Algorithm &algorithm, OclThreads &threads);
static ocl_gen_config_fun generators[] = {
# ifdef XMRIG_ALGO_RANDOMX
ocl_generic_rx_generator,
# endif
# ifdef XMRIG_ALGO_CN_GPU
ocl_generic_cn_gpu_generator,
# endif
ocl_vega_cn_generator,
ocl_generic_cn_generator
};
static OclVendor getVendorId(const String &vendor)
{
if (vendor.contains("Advanced Micro Devices") || vendor.contains("AMD")) {
return OCL_VENDOR_AMD;
}
if (vendor.contains("NVIDIA")) {
return OCL_VENDOR_NVIDIA;
}
if (vendor.contains("Intel")) {
return OCL_VENDOR_INTEL;
}
return OCL_VENDOR_UNKNOWN;
}
static OclDevice::Type getType(const String &name)
{
if (name == "gfx900" || name == "gfx901") {
return OclDevice::Vega_10;
}
if (name == "gfx902" || name == "gfx903") {
return OclDevice::Raven;
}
if (name == "gfx906" || name == "gfx907") {
return OclDevice::Vega_20;
}
if (name == "gfx1010") {
return OclDevice::Navi_10;
}
if (name == "gfx1011") {
return OclDevice::Navi_12;
}
if (name == "gfx1012") {
return OclDevice::Navi_14;
}
if (name == "gfx804") {
return OclDevice::Lexa;
}
if (name == "Baffin") {
return OclDevice::Baffin;
}
if (name == "gfx803" || name.contains("polaris") || name == "Ellesmere") {
return OclDevice::Polaris;
}
return OclDevice::Unknown;
}
} // namespace xmrig
xmrig::OclDevice::OclDevice(uint32_t index, cl_device_id id, cl_platform_id platform) :
m_id(id),
m_platform(platform),
m_board(OclLib::getString(id, 0x4038 /* CL_DEVICE_BOARD_NAME_AMD */)),
m_name(OclLib::getString(id, CL_DEVICE_NAME)),
m_vendor(OclLib::getString(id, CL_DEVICE_VENDOR)),
m_maxMemoryAlloc(OclLib::getUlong(id, CL_DEVICE_MAX_MEM_ALLOC_SIZE)),
m_globalMemory(OclLib::getUlong(id, CL_DEVICE_GLOBAL_MEM_SIZE)),
m_computeUnits(OclLib::getUint(id, CL_DEVICE_MAX_COMPUTE_UNITS, 1)),
m_index(index)
{
m_vendorId = getVendorId(m_vendor);
m_type = getType(m_name);
if (m_vendorId == OCL_VENDOR_AMD) {
topology_amd topology;
if (OclLib::getDeviceInfo(id, 0x4037 /* CL_DEVICE_TOPOLOGY_AMD */, sizeof(topology), &topology, nullptr) == CL_SUCCESS && topology.raw.type == 1) {
m_topology = PciTopology(static_cast<uint32_t>(topology.pcie.bus), static_cast<uint32_t>(topology.pcie.device), static_cast<uint32_t>(topology.pcie.function));
}
}
else if (m_vendorId == OCL_VENDOR_NVIDIA) {
cl_uint bus = 0;
if (OclLib::getDeviceInfo(id, 0x4008 /* CL_DEVICE_PCI_BUS_ID_NV */, sizeof (bus), &bus, nullptr) == CL_SUCCESS) {
cl_uint slot = OclLib::getUint(id, 0x4009 /* CL_DEVICE_PCI_SLOT_ID_NV */);
m_topology = PciTopology(bus, (slot >> 3) & 0xff, slot & 7);
}
}
}
xmrig::String xmrig::OclDevice::printableName() const
{
const size_t size = m_board.size() + m_name.size() + 64;
char *buf = new char[size]();
if (m_board.isNull()) {
snprintf(buf, size, GREEN_BOLD("%s"), m_name.data());
}
else {
snprintf(buf, size, GREEN_BOLD("%s") " (" CYAN_BOLD("%s") ")", m_board.data(), m_name.data());
}
return buf;
}
uint32_t xmrig::OclDevice::clock() const
{
return OclLib::getUint(id(), CL_DEVICE_MAX_CLOCK_FREQUENCY);
}
void xmrig::OclDevice::generate(const Algorithm &algorithm, OclThreads &threads) const
{
for (auto fn : generators) {
if (fn(*this, algorithm, threads)) {
return;
}
}
}
#ifdef XMRIG_FEATURE_API
void xmrig::OclDevice::toJSON(rapidjson::Value &out, rapidjson::Document &doc) const
{
using namespace rapidjson;
auto &allocator = doc.GetAllocator();
out.AddMember("board", board().toJSON(doc), allocator);
out.AddMember("name", name().toJSON(doc), allocator);
out.AddMember("bus_id", topology().toString().toJSON(doc), allocator);
out.AddMember("cu", computeUnits(), allocator);
out.AddMember("global_mem", static_cast<uint64_t>(globalMemSize()), allocator);
# ifdef XMRIG_FEATURE_ADL
if (AdlLib::isReady()) {
auto data = AdlLib::health(*this);
Value health(kObjectType);
health.AddMember("temperature", data.temperature, allocator);
health.AddMember("power", data.power, allocator);
health.AddMember("clock", data.clock, allocator);
health.AddMember("mem_clock", data.memClock, allocator);
health.AddMember("rpm", data.rpm, allocator);
out.AddMember("health", health, allocator);
}
# endif
}
#endif