REDACTED-rig/src/backend/cpu/CpuWorker.cpp
2021-06-21 23:49:13 +02:00

488 lines
14 KiB
C++

/* XMRig
* Copyright (c) 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright (c) 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <cassert>
#include <thread>
#include <mutex>
#include "backend/cpu/Cpu.h"
#include "backend/cpu/CpuWorker.h"
#include "base/tools/Chrono.h"
#include "core/config/Config.h"
#include "core/Miner.h"
#include "crypto/cn/CnCtx.h"
#include "crypto/cn/CryptoNight_test.h"
#include "crypto/cn/CryptoNight.h"
#include "crypto/common/Nonce.h"
#include "crypto/common/VirtualMemory.h"
#include "crypto/rx/Rx.h"
#include "crypto/rx/RxDataset.h"
#include "crypto/rx/RxVm.h"
#include "net/JobResults.h"
#ifdef XMRIG_ALGO_RANDOMX
# include "crypto/randomx/randomx.h"
#endif
#ifdef XMRIG_ALGO_ASTROBWT
# include "crypto/astrobwt/AstroBWT.h"
#endif
#ifdef XMRIG_FEATURE_BENCHMARK
# include "backend/common/benchmark/BenchState.h"
#endif
namespace xmrig {
static constexpr uint32_t kReserveCount = 32768;
#ifdef XMRIG_ALGO_CN_HEAVY
static std::mutex cn_heavyZen3MemoryMutex;
VirtualMemory* cn_heavyZen3Memory = nullptr;
#endif
} // namespace xmrig
template<size_t N>
xmrig::CpuWorker<N>::CpuWorker(size_t id, const CpuLaunchData &data) :
Worker(id, data.affinity, data.priority),
m_algorithm(data.algorithm),
m_assembly(data.assembly),
m_astrobwtAVX2(data.astrobwtAVX2),
m_hwAES(data.hwAES),
m_yield(data.yield),
m_av(data.av()),
m_astrobwtMaxSize(data.astrobwtMaxSize * 1000),
m_miner(data.miner),
m_threads(data.threads),
m_ctx()
{
# ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs
if ((N == 1) && (m_av == CnHash::AV_SINGLE) && (m_algorithm.family() == Algorithm::CN_HEAVY) && (m_assembly != Assembly::NONE) && (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3)) {
std::lock_guard<std::mutex> lock(cn_heavyZen3MemoryMutex);
if (!cn_heavyZen3Memory) {
// Round up number of threads to the multiple of 8
const size_t num_threads = ((m_threads + 7) / 8) * 8;
cn_heavyZen3Memory = new VirtualMemory(m_algorithm.l3() * num_threads, data.hugePages, false, false, node());
}
m_memory = cn_heavyZen3Memory;
}
else
# endif
{
m_memory = new VirtualMemory(m_algorithm.l3() * N, data.hugePages, false, true, node());
}
}
template<size_t N>
xmrig::CpuWorker<N>::~CpuWorker()
{
# ifdef XMRIG_ALGO_RANDOMX
RxVm::destroy(m_vm);
# endif
CnCtx::release(m_ctx, N);
# ifdef XMRIG_ALGO_CN_HEAVY
if (m_memory != cn_heavyZen3Memory)
# endif
{
delete m_memory;
}
}
#ifdef XMRIG_ALGO_RANDOMX
template<size_t N>
void xmrig::CpuWorker<N>::allocateRandomX_VM()
{
RxDataset *dataset = Rx::dataset(m_job.currentJob(), node());
while (dataset == nullptr) {
std::this_thread::sleep_for(std::chrono::milliseconds(200));
if (Nonce::sequence(Nonce::CPU) == 0) {
return;
}
dataset = Rx::dataset(m_job.currentJob(), node());
}
if (!m_vm) {
// Try to allocate scratchpad from dataset's 1 GB huge pages, if normal huge pages are not available
uint8_t* scratchpad = m_memory->isHugePages() ? m_memory->scratchpad() : dataset->tryAllocateScrathpad();
m_vm = RxVm::create(dataset, scratchpad ? scratchpad : m_memory->scratchpad(), !m_hwAES, m_assembly, node());
}
}
#endif
template<size_t N>
bool xmrig::CpuWorker<N>::selfTest()
{
# ifdef XMRIG_ALGO_RANDOMX
if (m_algorithm.family() == Algorithm::RANDOM_X) {
return N == 1;
}
# endif
allocateCnCtx();
if (m_algorithm.family() == Algorithm::CN) {
const bool rc = verify(Algorithm::CN_0, test_output_v0) &&
verify(Algorithm::CN_1, test_output_v1) &&
verify(Algorithm::CN_2, test_output_v2) &&
verify(Algorithm::CN_FAST, test_output_msr) &&
verify(Algorithm::CN_XAO, test_output_xao) &&
verify(Algorithm::CN_RTO, test_output_rto) &&
verify(Algorithm::CN_HALF, test_output_half) &&
verify2(Algorithm::CN_R, test_output_r) &&
verify(Algorithm::CN_RWZ, test_output_rwz) &&
verify(Algorithm::CN_ZLS, test_output_zls) &&
verify(Algorithm::CN_CCX, test_output_ccx) &&
verify(Algorithm::CN_DOUBLE, test_output_double);
return rc;
}
# ifdef XMRIG_ALGO_CN_LITE
if (m_algorithm.family() == Algorithm::CN_LITE) {
return verify(Algorithm::CN_LITE_0, test_output_v0_lite) &&
verify(Algorithm::CN_LITE_1, test_output_v1_lite);
}
# endif
# ifdef XMRIG_ALGO_CN_HEAVY
if (m_algorithm.family() == Algorithm::CN_HEAVY) {
return verify(Algorithm::CN_HEAVY_0, test_output_v0_heavy) &&
verify(Algorithm::CN_HEAVY_XHV, test_output_xhv_heavy) &&
verify(Algorithm::CN_HEAVY_TUBE, test_output_tube_heavy);
}
# endif
# ifdef XMRIG_ALGO_CN_PICO
if (m_algorithm.family() == Algorithm::CN_PICO) {
return verify(Algorithm::CN_PICO_0, test_output_pico_trtl) &&
verify(Algorithm::CN_PICO_TLO, test_output_pico_tlo);
}
# endif
# ifdef XMRIG_ALGO_CN_FEMTO
if (m_algorithm.family() == Algorithm::CN_FEMTO) {
return verify(Algorithm::CN_UPX2, test_output_femto_upx2);
}
# endif
# ifdef XMRIG_ALGO_ARGON2
if (m_algorithm.family() == Algorithm::ARGON2) {
return verify(Algorithm::AR2_CHUKWA, argon2_chukwa_test_out) &&
verify(Algorithm::AR2_CHUKWA_V2, argon2_chukwa_v2_test_out) &&
verify(Algorithm::AR2_WRKZ, argon2_wrkz_test_out);
}
# endif
# ifdef XMRIG_ALGO_ASTROBWT
if (m_algorithm.family() == Algorithm::ASTROBWT) {
return verify(Algorithm::ASTROBWT_DERO, astrobwt_dero_test_out);
}
# endif
return false;
}
template<size_t N>
void xmrig::CpuWorker<N>::hashrateData(uint64_t &hashCount, uint64_t &, uint64_t &rawHashes) const
{
hashCount = m_count;
rawHashes = m_count;
}
template<size_t N>
void xmrig::CpuWorker<N>::start()
{
while (Nonce::sequence(Nonce::CPU) > 0) {
if (Nonce::isPaused()) {
do {
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
while (Nonce::isPaused() && Nonce::sequence(Nonce::CPU) > 0);
if (Nonce::sequence(Nonce::CPU) == 0) {
break;
}
consumeJob();
}
# ifdef XMRIG_ALGO_RANDOMX
bool first = true;
alignas(16) uint64_t tempHash[8] = {};
# endif
while (!Nonce::isOutdated(Nonce::CPU, m_job.sequence())) {
const Job &job = m_job.currentJob();
if (job.algorithm().l3() != m_algorithm.l3()) {
break;
}
uint32_t current_job_nonces[N];
for (size_t i = 0; i < N; ++i) {
current_job_nonces[i] = *m_job.nonce(i);
}
# ifdef XMRIG_FEATURE_BENCHMARK
if (m_benchSize) {
if (current_job_nonces[0] >= m_benchSize) {
return BenchState::done();
}
// Make each hash dependent on the previous one in single thread benchmark to prevent cheating with multiple threads
if (m_threads == 1) {
*(uint64_t*)(m_job.blob()) ^= BenchState::data();
}
}
# endif
bool valid = true;
uint8_t miner_signature_saved[64];
uint8_t* miner_signature_ptr = m_job.blob() + m_job.nonceOffset() + m_job.nonceSize();
# ifdef XMRIG_ALGO_RANDOMX
if (job.algorithm().family() == Algorithm::RANDOM_X) {
if (first) {
first = false;
if (job.hasMinerSignature()) {
job.generateMinerSignature(m_job.blob(), job.size(), miner_signature_ptr);
}
randomx_calculate_hash_first(m_vm, tempHash, m_job.blob(), job.size());
}
if (!nextRound()) {
break;
}
if (job.hasMinerSignature()) {
memcpy(miner_signature_saved, miner_signature_ptr, sizeof(miner_signature_saved));
job.generateMinerSignature(m_job.blob(), job.size(), miner_signature_ptr);
}
randomx_calculate_hash_next(m_vm, tempHash, m_job.blob(), job.size(), m_hash);
}
else
# endif
{
# ifdef XMRIG_ALGO_ASTROBWT
if (job.algorithm().family() == Algorithm::ASTROBWT) {
if (!astrobwt::astrobwt_dero(m_job.blob(), job.size(), m_ctx[0]->memory, m_hash, m_astrobwtMaxSize, m_astrobwtAVX2))
valid = false;
}
else
# endif
{
fn(job.algorithm())(m_job.blob(), job.size(), m_hash, m_ctx, job.height());
}
if (!nextRound()) {
break;
};
}
if (valid) {
for (size_t i = 0; i < N; ++i) {
const uint64_t value = *reinterpret_cast<uint64_t*>(m_hash + (i * 32) + 24);
# ifdef XMRIG_FEATURE_BENCHMARK
if (m_benchSize) {
if (current_job_nonces[i] < m_benchSize) {
BenchState::add(value);
}
}
else
# endif
if (value < job.target()) {
JobResults::submit(job, current_job_nonces[i], m_hash + (i * 32), miner_signature_saved);
}
}
m_count += N;
}
if (m_yield) {
std::this_thread::yield();
}
}
consumeJob();
}
}
template<size_t N>
bool xmrig::CpuWorker<N>::nextRound()
{
# ifdef XMRIG_FEATURE_BENCHMARK
const uint32_t count = m_benchSize ? 1U : kReserveCount;
# else
constexpr uint32_t count = kReserveCount;
# endif
if (!m_job.nextRound(count, 1)) {
JobResults::done(m_job.currentJob());
return false;
}
return true;
}
template<size_t N>
bool xmrig::CpuWorker<N>::verify(const Algorithm &algorithm, const uint8_t *referenceValue)
{
cn_hash_fun func = fn(algorithm);
if (!func) {
return false;
}
func(test_input, 76, m_hash, m_ctx, 0);
return memcmp(m_hash, referenceValue, sizeof m_hash) == 0;
}
template<size_t N>
bool xmrig::CpuWorker<N>::verify2(const Algorithm &algorithm, const uint8_t *referenceValue)
{
cn_hash_fun func = fn(algorithm);
if (!func) {
return false;
}
for (size_t i = 0; i < (sizeof(cn_r_test_input) / sizeof(cn_r_test_input[0])); ++i) {
const size_t size = cn_r_test_input[i].size;
for (size_t k = 0; k < N; ++k) {
memcpy(m_job.blob() + (k * size), cn_r_test_input[i].data, size);
}
func(m_job.blob(), size, m_hash, m_ctx, cn_r_test_input[i].height);
for (size_t k = 0; k < N; ++k) {
if (memcmp(m_hash + k * 32, referenceValue + i * 32, sizeof m_hash / N) != 0) {
return false;
}
}
}
return true;
}
namespace xmrig {
template<>
bool CpuWorker<1>::verify2(const Algorithm &algorithm, const uint8_t *referenceValue)
{
cn_hash_fun func = fn(algorithm);
if (!func) {
return false;
}
for (size_t i = 0; i < (sizeof(cn_r_test_input) / sizeof(cn_r_test_input[0])); ++i) {
func(cn_r_test_input[i].data, cn_r_test_input[i].size, m_hash, m_ctx, cn_r_test_input[i].height);
if (memcmp(m_hash, referenceValue + i * 32, sizeof m_hash) != 0) {
return false;
}
}
return true;
}
} // namespace xmrig
template<size_t N>
void xmrig::CpuWorker<N>::allocateCnCtx()
{
if (m_ctx[0] == nullptr) {
int shift = 0;
# ifdef XMRIG_ALGO_CN_HEAVY
// cn-heavy optimization for Zen3 CPUs
if (m_memory == cn_heavyZen3Memory) {
shift = (id() / 8) * m_algorithm.l3() * 8 + (id() % 8) * 64;
}
# endif
CnCtx::create(m_ctx, m_memory->scratchpad() + shift, m_algorithm.l3(), N);
}
}
template<size_t N>
void xmrig::CpuWorker<N>::consumeJob()
{
if (Nonce::sequence(Nonce::CPU) == 0) {
return;
}
auto job = m_miner->job();
# ifdef XMRIG_FEATURE_BENCHMARK
m_benchSize = job.benchSize();
const uint32_t count = m_benchSize ? 1U : kReserveCount;
# else
constexpr uint32_t count = kReserveCount;
# endif
m_job.add(job, count, Nonce::CPU);
# ifdef XMRIG_ALGO_RANDOMX
if (m_job.currentJob().algorithm().family() == Algorithm::RANDOM_X) {
allocateRandomX_VM();
}
else
# endif
{
allocateCnCtx();
}
}
namespace xmrig {
template class CpuWorker<1>;
template class CpuWorker<2>;
template class CpuWorker<3>;
template class CpuWorker<4>;
template class CpuWorker<5>;
} // namespace xmrig