REDACTED-rig/src/workers/MultiWorker.cpp

320 lines
9.1 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <thread>
#include "crypto/cn/CryptoNight_test.h"
#include "workers/CpuThreadLegacy.h"
#include "workers/MultiWorker.h"
#include "workers/Workers.h"
template<size_t N>
xmrig::MultiWorker<N>::MultiWorker(ThreadHandle *handle)
: Worker(handle)
{
if (m_thread->algorithm().family() != Algorithm::RANDOM_X) {
m_memory = Mem::create(m_ctx, m_thread->algorithm(), N);
}
}
template<size_t N>
xmrig::MultiWorker<N>::~MultiWorker()
{
Mem::release(m_ctx, N, m_memory);
# ifdef XMRIG_ALGO_RANDOMX
if (m_rx_vm) {
randomx_destroy_vm(m_rx_vm);
}
# endif
}
#ifdef XMRIG_ALGO_RANDOMX
template<size_t N>
void xmrig::MultiWorker<N>::allocateRandomX_VM()
{
if (!m_rx_vm) {
int flags = RANDOMX_FLAG_LARGE_PAGES | RANDOMX_FLAG_FULL_MEM | RANDOMX_FLAG_JIT;
if (!m_thread->isSoftAES()) {
flags |= RANDOMX_FLAG_HARD_AES;
}
m_rx_vm = randomx_create_vm(static_cast<randomx_flags>(flags), nullptr, Workers::getDataset());
if (!m_rx_vm) {
m_rx_vm = randomx_create_vm(static_cast<randomx_flags>(flags - RANDOMX_FLAG_LARGE_PAGES), nullptr, Workers::getDataset());
}
}
}
#endif
template<size_t N>
bool xmrig::MultiWorker<N>::selfTest()
{
if (m_thread->algorithm().family() == Algorithm::CN) {
const bool rc = verify(Algorithm::CN_0, test_output_v0) &&
verify(Algorithm::CN_1, test_output_v1) &&
verify(Algorithm::CN_2, test_output_v2) &&
verify(Algorithm::CN_FAST, test_output_msr) &&
verify(Algorithm::CN_XAO, test_output_xao) &&
verify(Algorithm::CN_RTO, test_output_rto) &&
verify(Algorithm::CN_HALF, test_output_half) &&
verify2(Algorithm::CN_WOW, test_output_wow) &&
verify2(Algorithm::CN_R, test_output_r) &&
verify(Algorithm::CN_RWZ, test_output_rwz) &&
verify(Algorithm::CN_ZLS, test_output_zls) &&
verify(Algorithm::CN_DOUBLE, test_output_double);
# ifdef XMRIG_ALGO_CN_GPU
if (!rc || N > 1) {
return rc;
}
return verify(Algorithm::CN_GPU, test_output_gpu);
# else
return rc;
# endif
}
# ifdef XMRIG_ALGO_CN_LITE
if (m_thread->algorithm().family() == Algorithm::CN_LITE) {
return verify(Algorithm::CN_LITE_0, test_output_v0_lite) &&
verify(Algorithm::CN_LITE_1, test_output_v1_lite);
}
# endif
# ifdef XMRIG_ALGO_CN_HEAVY
if (m_thread->algorithm().family() == Algorithm::CN_HEAVY) {
return verify(Algorithm::CN_HEAVY_0, test_output_v0_heavy) &&
verify(Algorithm::CN_HEAVY_XHV, test_output_xhv_heavy) &&
verify(Algorithm::CN_HEAVY_TUBE, test_output_tube_heavy);
}
# endif
# ifdef XMRIG_ALGO_CN_PICO
if (m_thread->algorithm().family() == Algorithm::CN_PICO) {
return verify(Algorithm::CN_PICO_0, test_output_pico_trtl);
}
# endif
# ifdef XMRIG_ALGO_RANDOMX
if (m_thread->algorithm().family() == Algorithm::RANDOM_X) {
return true;
}
# endif
return false;
}
template<size_t N>
void xmrig::MultiWorker<N>::start()
{
while (Workers::sequence() > 0) {
if (Workers::isPaused()) {
do {
std::this_thread::sleep_for(std::chrono::milliseconds(200));
}
while (Workers::isPaused());
if (Workers::sequence() == 0) {
break;
}
consumeJob();
}
while (!Workers::isOutdated(m_sequence)) {
if ((m_count & 0x7) == 0) {
storeStats();
}
# ifdef XMRIG_ALGO_RANDOMX
if (m_state.job.algorithm().family() == Algorithm::RANDOM_X) {
allocateRandomX_VM();
Workers::updateDataset(m_state.job.seedHash(), m_totalWays, m_state.job.algorithm());
randomx_calculate_hash(m_rx_vm, m_state.blob, m_state.job.size(), m_hash);
}
else
# endif
{
m_thread->fn(m_state.job.algorithm())(m_state.blob, m_state.job.size(), m_hash, m_ctx, m_state.job.height());
}
for (size_t i = 0; i < N; ++i) {
if (*reinterpret_cast<uint64_t*>(m_hash + (i * 32) + 24) < m_state.job.target()) {
Workers::submit(JobResult(m_state.job.poolId(), m_state.job.id(), m_state.job.clientId(), *nonce(i), m_hash + (i * 32), m_state.job.diff(), m_state.job.algorithm()));
}
*nonce(i) += 1;
}
m_count += N;
std::this_thread::yield();
}
consumeJob();
}
}
template<size_t N>
bool xmrig::MultiWorker<N>::resume(const xmrig::Job &job)
{
if (m_state.job.poolId() == -1 && job.poolId() >= 0 && job.id() == m_pausedState.job.id()) {
m_state = m_pausedState;
return true;
}
return false;
}
template<size_t N>
bool xmrig::MultiWorker<N>::verify(const Algorithm &algorithm, const uint8_t *referenceValue)
{
cn_hash_fun func = m_thread->fn(algorithm);
if (!func) {
return false;
}
func(test_input, 76, m_hash, m_ctx, 0);
return memcmp(m_hash, referenceValue, sizeof m_hash) == 0;
}
template<size_t N>
bool xmrig::MultiWorker<N>::verify2(const Algorithm &algorithm, const uint8_t *referenceValue)
{
cn_hash_fun func = m_thread->fn(algorithm);
if (!func) {
return false;
}
for (size_t i = 0; i < (sizeof(cn_r_test_input) / sizeof(cn_r_test_input[0])); ++i) {
const size_t size = cn_r_test_input[i].size;
for (size_t k = 0; k < N; ++k) {
memcpy(m_state.blob + (k * size), cn_r_test_input[i].data, size);
}
func(m_state.blob, size, m_hash, m_ctx, cn_r_test_input[i].height);
for (size_t k = 0; k < N; ++k) {
if (memcmp(m_hash + k * 32, referenceValue + i * 32, sizeof m_hash / N) != 0) {
return false;
}
}
}
return true;
}
namespace xmrig {
template<>
bool MultiWorker<1>::verify2(const Algorithm &algorithm, const uint8_t *referenceValue)
{
cn_hash_fun func = m_thread->fn(algorithm);
if (!func) {
return false;
}
for (size_t i = 0; i < (sizeof(cn_r_test_input) / sizeof(cn_r_test_input[0])); ++i) {
func(cn_r_test_input[i].data, cn_r_test_input[i].size, m_hash, m_ctx, cn_r_test_input[i].height);
if (memcmp(m_hash, referenceValue + i * 32, sizeof m_hash) != 0) {
return false;
}
}
return true;
}
} // namespace xmrig
template<size_t N>
void xmrig::MultiWorker<N>::consumeJob()
{
Job job = Workers::job();
m_sequence = Workers::sequence();
if (m_state.job == job) {
return;
}
save(job);
if (resume(job)) {
return;
}
m_state.job = job;
const size_t size = m_state.job.size();
memcpy(m_state.blob, m_state.job.blob(), m_state.job.size());
if (N > 1) {
for (size_t i = 1; i < N; ++i) {
memcpy(m_state.blob + (i * size), m_state.blob, size);
}
}
for (size_t i = 0; i < N; ++i) {
if (m_state.job.isNicehash()) {
*nonce(i) = (*nonce(i) & 0xff000000U) + (0xffffffU / m_totalWays * (m_offset + i));
}
else {
*nonce(i) = 0xffffffffU / m_totalWays * (m_offset + i);
}
}
}
template<size_t N>
void xmrig::MultiWorker<N>::save(const Job &job)
{
if (job.poolId() == -1 && m_state.job.poolId() >= 0) {
m_pausedState = m_state;
}
}
namespace xmrig {
template class MultiWorker<1>;
template class MultiWorker<2>;
template class MultiWorker<3>;
template class MultiWorker<4>;
template class MultiWorker<5>;
} // namespace xmrig