85 lines
3 KiB
C++
85 lines
3 KiB
C++
/* XMRig
|
|
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
|
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
|
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
|
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
|
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
|
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
|
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
|
|
* Copyright 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
|
*
|
|
* This program is free software: you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation, either version 3 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
|
*/
|
|
|
|
|
|
#include "backend/cuda/runners/CudaAstroBWTRunner.h"
|
|
#include "backend/cuda/CudaLaunchData.h"
|
|
#include "backend/cuda/wrappers/CudaLib.h"
|
|
#include "base/net/stratum/Job.h"
|
|
|
|
|
|
constexpr uint32_t xmrig::CudaAstroBWTRunner::BWT_DATA_STRIDE;
|
|
|
|
|
|
xmrig::CudaAstroBWTRunner::CudaAstroBWTRunner(size_t index, const CudaLaunchData &data)
|
|
: CudaBaseRunner(index, data)
|
|
, m_algorithm(data.algorithm)
|
|
{
|
|
m_intensity = m_data.thread.threads() * m_data.thread.blocks();
|
|
m_intensity -= m_intensity % 32;
|
|
|
|
// Dero HE has very fast blocks, so we can't use high intensity
|
|
if ((m_algorithm == Algorithm::ASTROBWT_DERO_2) && (m_intensity > 4096)) {
|
|
m_intensity = 4096;
|
|
}
|
|
}
|
|
|
|
|
|
bool xmrig::CudaAstroBWTRunner::run(uint32_t startNonce, uint32_t *rescount, uint32_t *resnonce)
|
|
{
|
|
return callWrapper(CudaLib::astroBWTHash(m_ctx, startNonce, m_target, rescount, resnonce));
|
|
}
|
|
|
|
|
|
bool xmrig::CudaAstroBWTRunner::set(const Job &job, uint8_t *blob)
|
|
{
|
|
if (!CudaBaseRunner::set(job, blob)) {
|
|
return false;
|
|
}
|
|
|
|
return callWrapper(CudaLib::astroBWTPrepare(m_ctx, static_cast<uint32_t>(m_intensity)));
|
|
}
|
|
|
|
|
|
size_t xmrig::CudaAstroBWTRunner::roundSize() const
|
|
{
|
|
if (m_algorithm == Algorithm::ASTROBWT_DERO_2) {
|
|
return m_intensity;
|
|
}
|
|
|
|
constexpr uint32_t STAGE1_SIZE = 147253;
|
|
constexpr uint32_t STAGE1_DATA_STRIDE = (STAGE1_SIZE + 256 + 255) & ~255U;
|
|
|
|
const uint32_t BATCH2_SIZE = static_cast<uint32_t>(m_intensity);
|
|
const uint32_t BWT_ALLOCATION_SIZE = BATCH2_SIZE * BWT_DATA_STRIDE;
|
|
const uint32_t BATCH1_SIZE = (BWT_ALLOCATION_SIZE / STAGE1_DATA_STRIDE) & ~255U;
|
|
|
|
return BATCH1_SIZE;
|
|
}
|
|
|
|
|
|
size_t xmrig::CudaAstroBWTRunner::processedHashes() const
|
|
{
|
|
return CudaLib::deviceInt(m_ctx, CudaLib::DeviceAstroBWTProcessedHashes);
|
|
}
|