REDACTED-rig/src/crypto/astrobwt/AstroBWT.cpp
2021-10-19 17:37:45 +02:00

452 lines
12 KiB
C++

/* XMRig
* Copyright (c) 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright (c) 2018-2019 tevador <tevador@gmail.com>
* Copyright (c) 2000 Transmeta Corporation <https://github.com/intel/msr-tools>
* Copyright (c) 2004-2008 H. Peter Anvin <https://github.com/intel/msr-tools>
* Copyright (c) 2018-2021 SChernykh <https://github.com/SChernykh>
* Copyright (c) 2016-2021 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "crypto/astrobwt/AstroBWT.h"
#include "backend/cpu/Cpu.h"
#include "base/crypto/sha3.h"
#include "base/tools/bswap_64.h"
#include "crypto/cn/CryptoNight.h"
#include <limits>
constexpr int STAGE1_SIZE = 147253;
constexpr int ALLOCATION_SIZE = (STAGE1_SIZE + 1048576) + (128 - (STAGE1_SIZE & 63));
constexpr int COUNTING_SORT_BITS = 10;
constexpr int COUNTING_SORT_SIZE = 1 << COUNTING_SORT_BITS;
static bool astrobwtInitialized = false;
#ifdef ASTROBWT_AVX2
static bool hasAVX2 = false;
extern "C"
#ifndef _MSC_VER
__attribute__((ms_abi))
#endif
void SHA3_256_AVX2_ASM(const void* in, size_t inBytes, void* out);
#endif
#ifdef XMRIG_ARM
extern "C" {
#include "salsa20_ref/ecrypt-sync.h"
}
static void Salsa20_XORKeyStream(const void* key, void* output, size_t size)
{
uint8_t iv[8] = {};
ECRYPT_ctx ctx;
ECRYPT_keysetup(&ctx, static_cast<const uint8_t*>(key), 256, 64);
ECRYPT_ivsetup(&ctx, iv);
ECRYPT_keystream_bytes(&ctx, static_cast<uint8_t*>(output), size);
memset(static_cast<uint8_t*>(output) - 16, 0, 16);
memset(static_cast<uint8_t*>(output) + size, 0, 16);
}
#else
#include "Salsa20.hpp"
static void Salsa20_XORKeyStream(const void* key, void* output, size_t size)
{
const uint64_t iv = 0;
ZeroTier::Salsa20 s(key, &iv);
s.XORKeyStream(output, static_cast<uint32_t>(size));
memset(static_cast<uint8_t*>(output) - 16, 0, 16);
memset(static_cast<uint8_t*>(output) + size, 0, 16);
}
extern "C" int salsa20_stream_avx2(void* c, uint64_t clen, const void* iv, const void* key);
static void Salsa20_XORKeyStream_AVX256(const void* key, void* output, size_t size)
{
const uint64_t iv = 0;
salsa20_stream_avx2(output, size, &iv, key);
memset(static_cast<uint8_t*>(output) - 16, 0, 16);
memset(static_cast<uint8_t*>(output) + size, 0, 16);
}
#endif
static inline bool smaller(const uint8_t* v, uint64_t a, uint64_t b)
{
const uint64_t value_a = a >> 21;
const uint64_t value_b = b >> 21;
if (value_a < value_b) {
return true;
}
if (value_a > value_b) {
return false;
}
a &= (1 << 21) - 1;
b &= (1 << 21) - 1;
if (a == b) {
return false;
}
const uint64_t data_a = bswap_64(*reinterpret_cast<const uint64_t*>(v + a + 5));
const uint64_t data_b = bswap_64(*reinterpret_cast<const uint64_t*>(v + b + 5));
return (data_a < data_b);
}
void sort_indices(uint32_t N, const uint8_t* v, uint64_t* indices, uint64_t* tmp_indices)
{
uint32_t counters[2][COUNTING_SORT_SIZE] = {};
{
#define ITER(X) \
do { \
const uint64_t k = bswap_64(*reinterpret_cast<const uint64_t*>(v + i + X)); \
++counters[0][(k >> (64 - COUNTING_SORT_BITS * 2)) & (COUNTING_SORT_SIZE - 1)]; \
++counters[1][k >> (64 - COUNTING_SORT_BITS)]; \
} while (0)
uint32_t i = 0;
const uint32_t n = N - 15;
for (; i < n; i += 16) {
ITER(0); ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7);
ITER(8); ITER(9); ITER(10); ITER(11); ITER(12); ITER(13); ITER(14); ITER(15);
}
for (; i < N; ++i) {
ITER(0);
}
#undef ITER
}
uint32_t prev[2] = { counters[0][0], counters[1][0] };
counters[0][0] = prev[0] - 1;
counters[1][0] = prev[1] - 1;
for (int i = 1; i < COUNTING_SORT_SIZE; ++i)
{
const uint32_t cur[2] = { counters[0][i] + prev[0], counters[1][i] + prev[1] };
counters[0][i] = cur[0] - 1;
counters[1][i] = cur[1] - 1;
prev[0] = cur[0];
prev[1] = cur[1];
}
{
#define ITER(X) \
do { \
const uint64_t k = bswap_64(*reinterpret_cast<const uint64_t*>(v + (i - X))); \
tmp_indices[counters[0][(k >> (64 - COUNTING_SORT_BITS * 2)) & (COUNTING_SORT_SIZE - 1)]--] = (k & (static_cast<uint64_t>(-1) << 21)) | (i - X); \
} while (0)
uint32_t i = N;
for (; i >= 8; i -= 8) {
ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7); ITER(8);
}
for (; i > 0; --i) {
ITER(1);
}
#undef ITER
}
{
#define ITER(X) \
do { \
const uint64_t data = tmp_indices[i - X]; \
indices[counters[1][data >> (64 - COUNTING_SORT_BITS)]--] = data; \
} while (0)
uint32_t i = N;
for (; i >= 8; i -= 8) {
ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7); ITER(8);
}
for (; i > 0; --i) {
ITER(1);
}
#undef ITER
}
uint64_t prev_t = indices[0];
for (uint32_t i = 1; i < N; ++i)
{
uint64_t t = indices[i];
if (smaller(v, t, prev_t))
{
const uint64_t t2 = prev_t;
int j = i - 1;
do
{
indices[j + 1] = prev_t;
--j;
if (j < 0) {
break;
}
prev_t = indices[j];
} while (smaller(v, t, prev_t));
indices[j + 1] = t;
t = t2;
}
prev_t = t;
}
}
void sort_indices2(uint32_t N, const uint8_t* v, uint64_t* indices, uint64_t* tmp_indices)
{
alignas(16) uint32_t counters[1 << COUNTING_SORT_BITS] = {};
alignas(16) uint32_t counters2[1 << COUNTING_SORT_BITS];
{
#define ITER(X) { \
const uint64_t k = bswap_64(*reinterpret_cast<const uint64_t*>(v + i + X)); \
++counters[k >> (64 - COUNTING_SORT_BITS)]; \
}
uint32_t i = 0;
const uint32_t n = (N / 32) * 32;
for (; i < n; i += 32) {
ITER(0); ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7);
ITER(8); ITER(9); ITER(10); ITER(11); ITER(12); ITER(13); ITER(14); ITER(15);
ITER(16); ITER(17); ITER(18); ITER(19); ITER(20); ITER(21); ITER(22); ITER(23);
ITER(24); ITER(25); ITER(26); ITER(27); ITER(28); ITER(29); ITER(30); ITER(31);
}
for (; i < N; ++i) {
ITER(0);
}
#undef ITER
}
uint32_t prev = static_cast<uint32_t>(-1);
for (uint32_t i = 0; i < (1 << COUNTING_SORT_BITS); i += 16)
{
#define ITER(X) { \
const uint32_t cur = counters[i + X] + prev; \
counters[i + X] = cur; \
counters2[i + X] = cur; \
prev = cur; \
}
ITER(0); ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7);
ITER(8); ITER(9); ITER(10); ITER(11); ITER(12); ITER(13); ITER(14); ITER(15);
#undef ITER
}
{
#define ITER(X) \
do { \
const uint64_t k = bswap_64(*reinterpret_cast<const uint64_t*>(v + (i - X))); \
indices[counters[k >> (64 - COUNTING_SORT_BITS)]--] = (k & (static_cast<uint64_t>(-1) << 21)) | (i - X); \
} while (0)
uint32_t i = N;
for (; i >= 8; i -= 8) {
ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7); ITER(8);
}
for (; i > 0; --i) {
ITER(1);
}
#undef ITER
}
uint32_t prev_i = 0;
for (uint32_t i0 = 0; i0 < (1 << COUNTING_SORT_BITS); ++i0) {
const uint32_t i = counters2[i0] + 1;
const uint32_t n = i - prev_i;
if (n > 1) {
memset(counters, 0, sizeof(uint32_t) * (1 << COUNTING_SORT_BITS));
const uint32_t n8 = (n / 8) * 8;
uint32_t j = 0;
#define ITER(X) { \
const uint64_t k = indices[prev_i + j + X]; \
++counters[(k >> (64 - COUNTING_SORT_BITS * 2)) & ((1 << COUNTING_SORT_BITS) - 1)]; \
tmp_indices[j + X] = k; \
}
for (; j < n8; j += 8) {
ITER(0); ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7);
}
for (; j < n; ++j) {
ITER(0);
}
#undef ITER
uint32_t prev = static_cast<uint32_t>(-1);
for (uint32_t j = 0; j < (1 << COUNTING_SORT_BITS); j += 32)
{
#define ITER(X) { \
const uint32_t cur = counters[j + X] + prev; \
counters[j + X] = cur; \
prev = cur; \
}
ITER(0); ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7);
ITER(8); ITER(9); ITER(10); ITER(11); ITER(12); ITER(13); ITER(14); ITER(15);
ITER(16); ITER(17); ITER(18); ITER(19); ITER(20); ITER(21); ITER(22); ITER(23);
ITER(24); ITER(25); ITER(26); ITER(27); ITER(28); ITER(29); ITER(30); ITER(31);
#undef ITER
}
#define ITER(X) { \
const uint64_t k = tmp_indices[j + X]; \
const uint32_t index = counters[(k >> (64 - COUNTING_SORT_BITS * 2)) & ((1 << COUNTING_SORT_BITS) - 1)]--; \
indices[prev_i + index] = k; \
}
for (j = 0; j < n8; j += 8) {
ITER(0); ITER(1); ITER(2); ITER(3); ITER(4); ITER(5); ITER(6); ITER(7);
}
for (; j < n; ++j) {
ITER(0);
}
#undef ITER
uint64_t prev_t = indices[prev_i];
for (uint64_t* p = indices + prev_i + 1, *e = indices + i; p != e; ++p)
{
uint64_t t = *p;
if (smaller(v, t, prev_t))
{
const uint64_t t2 = prev_t;
uint64_t* p1 = p;
do
{
*p1 = prev_t;
--p1;
if (p1 <= indices + prev_i) {
break;
}
prev_t = *(p1 - 1);
} while (smaller(v, t, prev_t));
*p1 = t;
t = t2;
}
prev_t = t;
}
}
prev_i = i;
}
}
bool xmrig::astrobwt::astrobwt_dero(const void* input_data, uint32_t input_size, void* scratchpad, uint8_t* output_hash, int stage2_max_size, bool avx2)
{
alignas(8) uint8_t key[32];
uint8_t* scratchpad_ptr = (uint8_t*)(scratchpad) + 64;
uint8_t* stage1_output = scratchpad_ptr;
uint8_t* stage2_output = scratchpad_ptr;
uint64_t* indices = (uint64_t*)(scratchpad_ptr + ALLOCATION_SIZE);
uint64_t* tmp_indices = (uint64_t*)(scratchpad_ptr + ALLOCATION_SIZE * 9);
uint8_t* stage1_result = (uint8_t*)(tmp_indices);
uint8_t* stage2_result = (uint8_t*)(tmp_indices);
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2) {
SHA3_256_AVX2_ASM(input_data, input_size, key);
Salsa20_XORKeyStream_AVX256(key, stage1_output, STAGE1_SIZE);
}
else
#endif
{
sha3_HashBuffer(256, SHA3_FLAGS_NONE, input_data, input_size, key, sizeof(key));
Salsa20_XORKeyStream(key, stage1_output, STAGE1_SIZE);
}
sort_indices(STAGE1_SIZE + 1, stage1_output, indices, tmp_indices);
{
const uint8_t* tmp = stage1_output - 1;
for (int i = 0; i <= STAGE1_SIZE; ++i) {
stage1_result[i] = tmp[indices[i] & ((1 << 21) - 1)];
}
}
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2)
SHA3_256_AVX2_ASM(stage1_result, STAGE1_SIZE + 1, key);
else
#endif
sha3_HashBuffer(256, SHA3_FLAGS_NONE, stage1_result, STAGE1_SIZE + 1, key, sizeof(key));
const int stage2_size = STAGE1_SIZE + (*(uint32_t*)(key) & 0xfffff);
if (stage2_size > stage2_max_size) {
return false;
}
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2) {
Salsa20_XORKeyStream_AVX256(key, stage2_output, stage2_size);
}
else
#endif
{
Salsa20_XORKeyStream(key, stage2_output, stage2_size);
}
sort_indices2(stage2_size + 1, stage2_output, indices, tmp_indices);
{
const uint8_t* tmp = stage2_output - 1;
int i = 0;
const int n = ((stage2_size + 1) / 4) * 4;
for (; i < n; i += 4)
{
stage2_result[i + 0] = tmp[indices[i + 0] & ((1 << 21) - 1)];
stage2_result[i + 1] = tmp[indices[i + 1] & ((1 << 21) - 1)];
stage2_result[i + 2] = tmp[indices[i + 2] & ((1 << 21) - 1)];
stage2_result[i + 3] = tmp[indices[i + 3] & ((1 << 21) - 1)];
}
for (; i <= stage2_size; ++i) {
stage2_result[i] = tmp[indices[i] & ((1 << 21) - 1)];
}
}
#ifdef ASTROBWT_AVX2
if (hasAVX2 && avx2)
SHA3_256_AVX2_ASM(stage2_result, stage2_size + 1, output_hash);
else
#endif
sha3_HashBuffer(256, SHA3_FLAGS_NONE, stage2_result, stage2_size + 1, output_hash, 32);
return true;
}
void xmrig::astrobwt::init()
{
if (!astrobwtInitialized) {
# ifdef ASTROBWT_AVX2
hasAVX2 = Cpu::info()->hasAVX2();
# endif
astrobwtInitialized = true;
}
}
template<>
void xmrig::astrobwt::single_hash<xmrig::Algorithm::ASTROBWT_DERO>(const uint8_t* input, size_t size, uint8_t* output, cryptonight_ctx** ctx, uint64_t)
{
astrobwt_dero(input, static_cast<uint32_t>(size), ctx[0]->memory, output, std::numeric_limits<int>::max(), true);
}