REDACTED-rig/src/backend/cpu/platform/HwlocCpuInfo.cpp

462 lines
13 KiB
C++

/* XMRig
* Copyright (c) 2018-2023 SChernykh <https://github.com/SChernykh>
* Copyright (c) 2016-2023 XMRig <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifdef XMRIG_HWLOC_DEBUG
# include <uv.h>
#endif
#include <algorithm>
#include <cmath>
#include <hwloc.h>
#if HWLOC_API_VERSION < 0x00010b00
# define HWLOC_OBJ_PACKAGE HWLOC_OBJ_SOCKET
# define HWLOC_OBJ_NUMANODE HWLOC_OBJ_NODE
#endif
#include "backend/cpu/platform/HwlocCpuInfo.h"
#include "base/io/log/Log.h"
#if HWLOC_API_VERSION < 0x20000
static inline int hwloc_obj_type_is_cache(hwloc_obj_type_t type)
{
return type == HWLOC_OBJ_CACHE;
}
#endif
namespace xmrig {
template <typename func>
static inline void findCache(hwloc_obj_t obj, unsigned min, unsigned max, func lambda)
{
for (size_t i = 0; i < obj->arity; i++) {
if (hwloc_obj_type_is_cache(obj->children[i]->type)) {
const unsigned depth = obj->children[i]->attr->cache.depth;
if (depth < min || depth > max) {
continue;
}
lambda(obj->children[i]);
}
findCache(obj->children[i], min, max, lambda);
}
}
template <typename func>
static inline void findByType(hwloc_obj_t obj, hwloc_obj_type_t type, func lambda)
{
for (size_t i = 0; i < obj->arity; i++) {
if (obj->children[i]->type == type) {
lambda(obj->children[i]);
}
else {
findByType(obj->children[i], type, lambda);
}
}
}
static inline size_t countByType(hwloc_topology_t topology, hwloc_obj_type_t type)
{
const int count = hwloc_get_nbobjs_by_type(topology, type);
return count > 0 ? static_cast<size_t>(count) : 0;
}
#ifndef XMRIG_ARM
static inline std::vector<hwloc_obj_t> findByType(hwloc_obj_t obj, hwloc_obj_type_t type)
{
std::vector<hwloc_obj_t> out;
findByType(obj, type, [&out](hwloc_obj_t found) { out.emplace_back(found); });
return out;
}
static inline size_t countByType(hwloc_obj_t obj, hwloc_obj_type_t type)
{
size_t count = 0;
findByType(obj, type, [&count](hwloc_obj_t) { count++; });
return count;
}
static inline bool isCacheExclusive(hwloc_obj_t obj)
{
const char *value = hwloc_obj_get_info_by_name(obj, "Inclusive");
return value == nullptr || value[0] != '1';
}
#endif
} // namespace xmrig
xmrig::HwlocCpuInfo::HwlocCpuInfo()
{
hwloc_topology_init(&m_topology);
hwloc_topology_load(m_topology);
# ifdef XMRIG_HWLOC_DEBUG
# if defined(UV_VERSION_HEX) && UV_VERSION_HEX >= 0x010c00
{
char env[520] = { 0 };
size_t size = sizeof(env);
if (uv_os_getenv("HWLOC_XMLFILE", env, &size) == 0) {
printf("use HWLOC XML file: \"%s\"\n", env);
}
}
# endif
const std::vector<hwloc_obj_t> packages = findByType(hwloc_get_root_obj(m_topology), HWLOC_OBJ_PACKAGE);
if (!packages.empty()) {
const char *value = hwloc_obj_get_info_by_name(packages[0], "CPUModel");
if (value) {
strncpy(m_brand, value, 64);
}
}
# endif
hwloc_obj_t root = hwloc_get_root_obj(m_topology);
# if HWLOC_API_VERSION >= 0x00010b00
const char *version = hwloc_obj_get_info_by_name(root, "hwlocVersion");
if (version) {
snprintf(m_backend, sizeof m_backend, "hwloc/%s", version);
}
else
# endif
{
snprintf(m_backend, sizeof m_backend, "hwloc/%d.%d.%d",
(HWLOC_API_VERSION>>16)&0x000000ff,
(HWLOC_API_VERSION>>8 )&0x000000ff,
(HWLOC_API_VERSION )&0x000000ff
);
}
findCache(root, 2, 3, [this](hwloc_obj_t found) { this->m_cache[found->attr->cache.depth] += found->attr->cache.size; });
setThreads(countByType(m_topology, HWLOC_OBJ_PU));
m_cores = countByType(m_topology, HWLOC_OBJ_CORE);
m_nodes = std::max(hwloc_bitmap_weight(hwloc_topology_get_complete_nodeset(m_topology)), 1);
m_packages = countByType(m_topology, HWLOC_OBJ_PACKAGE);
if (m_nodes > 1) {
m_nodeset.reserve(m_nodes);
hwloc_obj_t node = nullptr;
while ((node = hwloc_get_next_obj_by_type(m_topology, HWLOC_OBJ_NUMANODE, node)) != nullptr) {
m_nodeset.emplace_back(node->os_index);
}
}
# if defined(XMRIG_OS_MACOS) && defined(XMRIG_ARM)
if (L2() == 33554432U && m_cores == 8 && m_cores == m_threads) {
m_cache[2] = 16777216U;
}
# endif
}
xmrig::HwlocCpuInfo::~HwlocCpuInfo()
{
hwloc_topology_destroy(m_topology);
}
bool xmrig::HwlocCpuInfo::membind(hwloc_const_bitmap_t nodeset)
{
if (!hwloc_topology_get_support(m_topology)->membind->set_thisthread_membind) {
return false;
}
# if HWLOC_API_VERSION >= 0x20000
return hwloc_set_membind(m_topology, nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_THREAD | HWLOC_MEMBIND_BYNODESET) >= 0;
# else
return hwloc_set_membind_nodeset(m_topology, nodeset, HWLOC_MEMBIND_BIND, HWLOC_MEMBIND_THREAD) >= 0;
# endif
}
xmrig::CpuThreads xmrig::HwlocCpuInfo::threads(const Algorithm &algorithm, uint32_t limit) const
{
# ifndef XMRIG_ARM
if (L2() == 0 && L3() == 0) {
return BasicCpuInfo::threads(algorithm, limit);
}
const unsigned depth = L3() > 0 ? 3 : 2;
CpuThreads threads;
threads.reserve(m_threads);
std::vector<hwloc_obj_t> caches;
caches.reserve(16);
findCache(hwloc_get_root_obj(m_topology), depth, depth, [&caches](hwloc_obj_t found) { caches.emplace_back(found); });
if (limit > 0 && limit < 100 && !caches.empty()) {
const double maxTotalThreads = round(m_threads * (limit / 100.0));
const auto maxPerCache = std::max(static_cast<int>(round(maxTotalThreads / caches.size())), 1);
int remaining = std::max(static_cast<int>(maxTotalThreads), 1);
for (hwloc_obj_t cache : caches) {
processTopLevelCache(cache, algorithm, threads, std::min(maxPerCache, remaining));
remaining -= maxPerCache;
if (remaining <= 0) {
break;
}
}
}
else {
for (hwloc_obj_t cache : caches) {
processTopLevelCache(cache, algorithm, threads, 0);
}
}
if (threads.isEmpty()) {
LOG_WARN("hwloc auto configuration for algorithm \"%s\" failed.", algorithm.name());
return BasicCpuInfo::threads(algorithm, limit);
}
return threads;
# else
return allThreads(algorithm, limit);
# endif
}
xmrig::CpuThreads xmrig::HwlocCpuInfo::allThreads(const Algorithm &algorithm, uint32_t limit) const
{
CpuThreads threads;
threads.reserve(m_threads);
const uint32_t intensity = (algorithm.family() == Algorithm::GHOSTRIDER) ? 8 : 0;
for (const int32_t pu : m_units) {
threads.add(pu, intensity);
}
if (threads.isEmpty()) {
return BasicCpuInfo::threads(algorithm, limit);
}
return threads;
}
void xmrig::HwlocCpuInfo::processTopLevelCache(hwloc_obj_t cache, const Algorithm &algorithm, CpuThreads &threads, size_t limit) const
{
# ifndef XMRIG_ARM
constexpr size_t oneMiB = 1024U * 1024U;
size_t PUs = countByType(cache, HWLOC_OBJ_PU);
if (PUs == 0) {
return;
}
std::vector<hwloc_obj_t> cores;
cores.reserve(m_cores);
findByType(cache, HWLOC_OBJ_CORE, [&cores](hwloc_obj_t found) { cores.emplace_back(found); });
const bool L3_exclusive = isCacheExclusive(cache);
# ifdef XMRIG_ALGO_GHOSTRIDER
if ((algorithm == Algorithm::GHOSTRIDER_RTM) && L3_exclusive && (PUs > cores.size()) && (PUs < cores.size() * 2)) {
// Don't use E-cores on Alder Lake
cores.erase(std::remove_if(cores.begin(), cores.end(), [](hwloc_obj_t c) { return hwloc_bitmap_weight(c->cpuset) == 1; }), cores.end());
// This shouldn't happen, but check it anyway
if (cores.empty()) {
findByType(cache, HWLOC_OBJ_CORE, [&cores](hwloc_obj_t found) { cores.emplace_back(found); });
}
}
# endif
size_t L3 = cache->attr->cache.size;
size_t L2 = 0;
int L2_associativity = 0;
size_t extra = 0;
size_t scratchpad = algorithm.l3();
uint32_t intensity = algorithm.maxIntensity() == 1 ? 0 : 1;
if (cache->attr->cache.depth == 3) {
auto process_L2 = [&L2, &L2_associativity, L3_exclusive, this, &extra, scratchpad](hwloc_obj_t l2) {
if (!hwloc_obj_type_is_cache(l2->type) || l2->attr == nullptr) {
return;
}
L2 += l2->attr->cache.size;
L2_associativity = l2->attr->cache.associativity;
if (L3_exclusive) {
if ((vendor() == VENDOR_AMD) && ((arch() == ARCH_ZEN4) || (arch() == ARCH_ZEN5))) {
// Use extra L2 only on newer CPUs because older CPUs (Zen 3 and older) don't benefit from it.
// For some reason, AMD CPUs can use only half of the exclusive L2/L3 cache combo efficiently
extra += std::min<size_t>(l2->attr->cache.size / 2, scratchpad);
}
else if (l2->attr->cache.size >= scratchpad) {
extra += scratchpad;
}
}
};
for (size_t i = 0; i < cache->arity; ++i) {
hwloc_obj_t ch = cache->children[i];
if (ch->type == HWLOC_OBJ_GROUP) {
for (size_t j = 0; j < ch->arity; ++j) {
process_L2(ch->children[j]);
}
}
else {
process_L2(ch);
}
}
}
// This code is supposed to run only on Intel CPUs
if ((vendor() == VENDOR_INTEL) && (scratchpad == 2 * oneMiB)) {
if (L2 && (cores.size() * oneMiB) == L2 && L2_associativity == 16 && L3 >= L2) {
L3 = L2;
extra = L2;
}
}
size_t cacheHashes = ((L3 + extra) + (scratchpad / 2)) / scratchpad;
const auto family = algorithm.family();
if (intensity && ((family == Algorithm::CN_PICO) || (family == Algorithm::CN_FEMTO)) && (cacheHashes / PUs) >= 2) {
intensity = 2;
}
# ifdef XMRIG_ALGO_RANDOMX
if ((vendor() == VENDOR_INTEL) && (algorithm.family() == Algorithm::RANDOM_X) && L3_exclusive && (PUs < cores.size() * 2)) {
// Use all L3+L2 on latest Intel CPUs with P-cores, E-cores and exclusive L3 cache
cacheHashes = (L3 + L2) / scratchpad;
}
if (extra == 0 && algorithm.l2() > 0) {
cacheHashes = std::min<size_t>(std::max<size_t>(L2 / algorithm.l2(), cores.size()), cacheHashes);
}
# endif
if (limit > 0) {
cacheHashes = std::min(cacheHashes, limit);
}
# ifdef XMRIG_ALGO_GHOSTRIDER
if (algorithm == Algorithm::GHOSTRIDER_RTM) {
// GhostRider implementation runs 8 hashes at a time
intensity = 8;
// Always 1 thread per core (it uses additional helper thread when possible)
cacheHashes = std::min(cacheHashes, cores.size());
}
# endif
if (cacheHashes >= PUs) {
for (hwloc_obj_t core : cores) {
const std::vector<hwloc_obj_t> units = findByType(core, HWLOC_OBJ_PU);
for (hwloc_obj_t pu : units) {
threads.add(pu->os_index, intensity);
}
}
return;
}
std::vector<std::pair<int64_t, int32_t>> threads_data;
threads_data.reserve(cores.size());
size_t pu_id = 0;
while (cacheHashes > 0 && PUs > 0) {
bool allocated_pu = false;
threads_data.clear();
for (hwloc_obj_t core : cores) {
const std::vector<hwloc_obj_t> units = findByType(core, HWLOC_OBJ_PU);
if (units.size() <= pu_id) {
continue;
}
cacheHashes--;
PUs--;
allocated_pu = true;
threads_data.emplace_back(units[pu_id]->os_index, intensity);
if (cacheHashes == 0) {
break;
}
}
// Reversing of "threads_data" and "cores" is done to fill in virtual cores starting from the last one, but still in order
// For example, cn-heavy threads on 6-core Zen2/Zen3 will have affinity [0,2,4,6,8,10,9,11]
// This is important for Zen3 cn-heavy optimization
if (pu_id & 1) {
std::reverse(threads_data.begin(), threads_data.end());
}
for (const auto& t : threads_data) {
threads.add(t.first, t.second);
}
if (!allocated_pu) {
break;
}
pu_id++;
std::reverse(cores.begin(), cores.end());
}
# endif
}
void xmrig::HwlocCpuInfo::setThreads(size_t threads)
{
if (!threads) {
return;
}
m_threads = threads;
if (m_units.size() != m_threads) {
m_units.resize(m_threads);
}
hwloc_obj_t pu = nullptr;
size_t i = 0;
while ((pu = hwloc_get_next_obj_by_type(m_topology, HWLOC_OBJ_PU, pu)) != nullptr) {
m_units[i++] = static_cast<int32_t>(pu->os_index);
}
}