eaglercraft-1.8/sources/main/java/com/google/common/io/CharSource.java

494 lines
15 KiB
Java
Raw Normal View History

2022-12-25 11:12:28 +02:00
/*
* Copyright (C) 2012 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.io;
import static com.google.common.base.Preconditions.checkNotNull;
import java.io.BufferedReader;
import java.io.IOException;
import java.io.Reader;
import java.io.Writer;
import java.nio.charset.Charset;
import java.util.Iterator;
import java.util.List;
import java.util.regex.Pattern;
import javax.annotation.Nullable;
import com.google.common.annotations.Beta;
import com.google.common.base.Ascii;
import com.google.common.base.Splitter;
import com.google.common.collect.AbstractIterator;
import com.google.common.collect.ImmutableList;
import com.google.common.collect.Lists;
/**
* A readable source of characters, such as a text file. Unlike a
* {@link Reader}, a {@code CharSource} is not an open, stateful stream of
* characters that can be read and closed. Instead, it is an immutable
* <i>supplier</i> of {@code Reader} instances.
*
* <p>
* {@code CharSource} provides two kinds of methods:
* <ul>
* <li><b>Methods that return a reader:</b> These methods should return a
* <i>new</i>, independent instance each time they are called. The caller is
* responsible for ensuring that the returned reader is closed.
* <li><b>Convenience methods:</b> These are implementations of common
* operations that are typically implemented by opening a reader using one of
* the methods in the first category, doing something and finally closing the
* reader that was opened.
* </ul>
*
* <p>
* Several methods in this class, such as {@link #readLines()}, break the
* contents of the source into lines. Like {@link BufferedReader}, these methods
* break lines on any of {@code \n}, {@code \r} or {@code \r\n}, do not include
* the line separator in each line and do not consider there to be an empty line
* at the end if the contents are terminated with a line separator.
*
* <p>
* Any {@link ByteSource} containing text encoded with a specific
* {@linkplain Charset character encoding} may be viewed as a {@code CharSource}
* using {@link ByteSource#asCharSource(Charset)}.
*
* @since 14.0
* @author Colin Decker
*/
public abstract class CharSource implements InputSupplier<Reader> {
/**
* Constructor for use by subclasses.
*/
protected CharSource() {
}
/**
* Opens a new {@link Reader} for reading from this source. This method should
* return a new, independent reader each time it is called.
*
* <p>
* The caller is responsible for ensuring that the returned reader is closed.
*
* @throws IOException if an I/O error occurs in the process of opening the
* reader
*/
public abstract Reader openStream() throws IOException;
/**
* This method is a temporary method provided for easing migration from
* suppliers to sources and sinks.
*
* @since 15.0
* @deprecated This method is only provided for temporary compatibility with the
* {@link InputSupplier} interface and should not be called
* directly. Use {@link #openStream} instead. This method is
* scheduled for removal in Guava 18.0.
*/
@Override
@Deprecated
public final Reader getInput() throws IOException {
return openStream();
}
/**
* Opens a new {@link BufferedReader} for reading from this source. This method
* should return a new, independent reader each time it is called.
*
* <p>
* The caller is responsible for ensuring that the returned reader is closed.
*
* @throws IOException if an I/O error occurs in the process of opening the
* reader
*/
public BufferedReader openBufferedStream() throws IOException {
Reader reader = openStream();
return (reader instanceof BufferedReader) ? (BufferedReader) reader : new BufferedReader(reader);
}
/**
* Appends the contents of this source to the given {@link Appendable} (such as
* a {@link Writer}). Does not close {@code appendable} if it is
* {@code Closeable}.
*
* @throws IOException if an I/O error occurs in the process of reading from
* this source or writing to {@code appendable}
*/
public long copyTo(Appendable appendable) throws IOException {
checkNotNull(appendable);
Closer closer = Closer.create();
try {
Reader reader = closer.register(openStream());
return CharStreams.copy(reader, appendable);
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Copies the contents of this source to the given sink.
*
* @throws IOException if an I/O error occurs in the process of reading from
* this source or writing to {@code sink}
*/
public long copyTo(CharSink sink) throws IOException {
checkNotNull(sink);
Closer closer = Closer.create();
try {
Reader reader = closer.register(openStream());
Writer writer = closer.register(sink.openStream());
return CharStreams.copy(reader, writer);
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Reads the contents of this source as a string.
*
* @throws IOException if an I/O error occurs in the process of reading from
* this source
*/
public String read() throws IOException {
Closer closer = Closer.create();
try {
Reader reader = closer.register(openStream());
return CharStreams.toString(reader);
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Reads the first link of this source as a string. Returns {@code null} if this
* source is empty.
*
* <p>
* Like {@link BufferedReader}, this method breaks lines on any of {@code \n},
* {@code \r} or {@code \r\n}, does not include the line separator in the
* returned line and does not consider there to be an extra empty line at the
* end if the content is terminated with a line separator.
*
* @throws IOException if an I/O error occurs in the process of reading from
* this source
*/
public @Nullable String readFirstLine() throws IOException {
Closer closer = Closer.create();
try {
BufferedReader reader = closer.register(openBufferedStream());
return reader.readLine();
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Reads all the lines of this source as a list of strings. The returned list
* will be empty if this source is empty.
*
* <p>
* Like {@link BufferedReader}, this method breaks lines on any of {@code \n},
* {@code \r} or {@code \r\n}, does not include the line separator in the
* returned lines and does not consider there to be an extra empty line at the
* end if the content is terminated with a line separator.
*
* @throws IOException if an I/O error occurs in the process of reading from
* this source
*/
public ImmutableList<String> readLines() throws IOException {
Closer closer = Closer.create();
try {
BufferedReader reader = closer.register(openBufferedStream());
List<String> result = Lists.newArrayList();
String line;
while ((line = reader.readLine()) != null) {
result.add(line);
}
return ImmutableList.copyOf(result);
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Reads lines of text from this source, processing each line as it is read
* using the given {@link LineProcessor processor}. Stops when all lines have
* been processed or the processor returns {@code false} and returns the result
* produced by the processor.
*
* <p>
* Like {@link BufferedReader}, this method breaks lines on any of {@code \n},
* {@code \r} or {@code \r\n}, does not include the line separator in the lines
* passed to the {@code processor} and does not consider there to be an extra
* empty line at the end if the content is terminated with a line separator.
*
* @throws IOException if an I/O error occurs in the process of reading from
* this source or if {@code processor} throws an
* {@code IOException}
* @since 16.0
*/
@Beta
public <T> T readLines(LineProcessor<T> processor) throws IOException {
checkNotNull(processor);
Closer closer = Closer.create();
try {
Reader reader = closer.register(openStream());
return CharStreams.readLines(reader, processor);
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Returns whether the source has zero chars. The default implementation is to
* open a stream and check for EOF.
*
* @throws IOException if an I/O error occurs
* @since 15.0
*/
public boolean isEmpty() throws IOException {
Closer closer = Closer.create();
try {
Reader reader = closer.register(openStream());
return reader.read() == -1;
} catch (Throwable e) {
throw closer.rethrow(e);
} finally {
closer.close();
}
}
/**
* Concatenates multiple {@link CharSource} instances into a single source.
* Streams returned from the source will contain the concatenated data from the
* streams of the underlying sources.
*
* <p>
* Only one underlying stream will be open at a time. Closing the concatenated
* stream will close the open underlying stream.
*
* @param sources the sources to concatenate
* @return a {@code CharSource} containing the concatenated data
* @since 15.0
*/
public static CharSource concat(Iterable<? extends CharSource> sources) {
return new ConcatenatedCharSource(sources);
}
/**
* Concatenates multiple {@link CharSource} instances into a single source.
* Streams returned from the source will contain the concatenated data from the
* streams of the underlying sources.
*
* <p>
* Only one underlying stream will be open at a time. Closing the concatenated
* stream will close the open underlying stream.
*
* <p>
* Note: The input {@code Iterator} will be copied to an {@code ImmutableList}
* when this method is called. This will fail if the iterator is infinite and
* may cause problems if the iterator eagerly fetches data for each source when
* iterated (rather than producing sources that only load data through their
* streams). Prefer using the {@link #concat(Iterable)} overload if possible.
*
* @param sources the sources to concatenate
* @return a {@code CharSource} containing the concatenated data
* @throws NullPointerException if any of {@code sources} is {@code null}
* @since 15.0
*/
public static CharSource concat(Iterator<? extends CharSource> sources) {
return concat(ImmutableList.copyOf(sources));
}
/**
* Concatenates multiple {@link CharSource} instances into a single source.
* Streams returned from the source will contain the concatenated data from the
* streams of the underlying sources.
*
* <p>
* Only one underlying stream will be open at a time. Closing the concatenated
* stream will close the open underlying stream.
*
* @param sources the sources to concatenate
* @return a {@code CharSource} containing the concatenated data
* @throws NullPointerException if any of {@code sources} is {@code null}
* @since 15.0
*/
public static CharSource concat(CharSource... sources) {
return concat(ImmutableList.copyOf(sources));
}
/**
* Returns a view of the given character sequence as a {@link CharSource}. The
* behavior of the returned {@code CharSource} and any {@code Reader} instances
* created by it is unspecified if the {@code charSequence} is mutated while it
* is being read, so don't do that.
*
* @since 15.0 (since 14.0 as {@code CharStreams.asCharSource(String)})
*/
public static CharSource wrap(CharSequence charSequence) {
return new CharSequenceCharSource(charSequence);
}
/**
* Returns an immutable {@link CharSource} that contains no characters.
*
* @since 15.0
*/
public static CharSource empty() {
return EmptyCharSource.INSTANCE;
}
private static class CharSequenceCharSource extends CharSource {
private static final Splitter LINE_SPLITTER = Splitter.on(Pattern.compile("\r\n|\n|\r"));
private final CharSequence seq;
protected CharSequenceCharSource(CharSequence seq) {
this.seq = checkNotNull(seq);
}
@Override
public Reader openStream() {
return new CharSequenceReader(seq);
}
@Override
public String read() {
return seq.toString();
}
@Override
public boolean isEmpty() {
return seq.length() == 0;
}
/**
* Returns an iterable over the lines in the string. If the string ends in a
* newline, a final empty string is not included to match the behavior of
* BufferedReader/LineReader.readLine().
*/
private Iterable<String> lines() {
return new Iterable<String>() {
@Override
public Iterator<String> iterator() {
return new AbstractIterator<String>() {
Iterator<String> lines = LINE_SPLITTER.split(seq).iterator();
@Override
protected String computeNext() {
if (lines.hasNext()) {
String next = lines.next();
// skip last line if it's empty
if (lines.hasNext() || !next.isEmpty()) {
return next;
}
}
return endOfData();
}
};
}
};
}
@Override
public String readFirstLine() {
Iterator<String> lines = lines().iterator();
return lines.hasNext() ? lines.next() : null;
}
@Override
public ImmutableList<String> readLines() {
return ImmutableList.copyOf(lines());
}
@Override
public <T> T readLines(LineProcessor<T> processor) throws IOException {
for (String line : lines()) {
if (!processor.processLine(line)) {
break;
}
}
return processor.getResult();
}
@Override
public String toString() {
return "CharSource.wrap(" + Ascii.truncate(seq, 30, "...") + ")";
}
}
private static final class EmptyCharSource extends CharSequenceCharSource {
private static final EmptyCharSource INSTANCE = new EmptyCharSource();
private EmptyCharSource() {
super("");
}
@Override
public String toString() {
return "CharSource.empty()";
}
}
private static final class ConcatenatedCharSource extends CharSource {
private final Iterable<? extends CharSource> sources;
ConcatenatedCharSource(Iterable<? extends CharSource> sources) {
this.sources = checkNotNull(sources);
}
@Override
public Reader openStream() throws IOException {
return new MultiReader(sources.iterator());
}
@Override
public boolean isEmpty() throws IOException {
for (CharSource source : sources) {
if (!source.isEmpty()) {
return false;
}
}
return true;
}
@Override
public String toString() {
return "CharSource.concat(" + sources + ")";
}
}
}