C++17 allows omitting the mutex type, which makes for both less reading
and more flexibility (e.g. The mutex type can change and all occurrences
don't need to be updated).
Previously, PowerPC.h had four macros in it like so:
\#define rPS0(i) (*(double*)(&PowerPC::ppcState.ps[i][0]))
\#define rPS1(i) (*(double*)(&PowerPC::ppcState.ps[i][1]))
\#define riPS0(i) (*(u64*)(&PowerPC::ppcState.ps[i][0]))
\#define riPS1(i) (*(u64*)(&PowerPC::ppcState.ps[i][1]))
Casting between object representations like this is undefined behavior.
Given this is used heavily with the interpreter (that is, the most
accurate, but slowest CPU backend), we don't exactly want to allow
undefined behavior to creep into it.
Instead, this adds a helper struct for operating with the paired singles,
and replaces the four macros with a single macro for accessing the
paired-singles/floating-point registers.
This way, it's left up to the caller to explicitly decide how it wants to interpret
the data (and makes it more obvious where different interpretations of
the same data are occurring at, as there'll be a call to one of the
[x]AsDouble() functions).
Adds a tickbox to the server's window to syncronize codes. Codes
are temporarily sent to each client and are used for the duration of the
session.
Saves the "sync codes" tickbox as per PR Netplay: Properly save hosting
settings #7483
PowerPC.h at this point is pretty much a general glob of stuff, and it's
unfortunate, since it means pulling in a lot of unrelated header
dependencies and a bunch of other things that don't need to be seen by
things that just want to read memory.
Breaking this out into its own header keeps all the MMU-related stuff
together and also limits the amount of header dependencies being
included (the primary motivation for this being the former reason).
Same thing but allows both GeckoCode and Code to be utilized directly
without predicates for equality/inequality in stardard algorithms
The size check for std::vectors is unnecessary, as this is built into std::vector's operator==
Because of the way this works, randomly overwriting the handler
when loading a savestate will break things because of the
self-modifying nature of the handler.
Dolphin emulates GeckoCodes by fiddling with the CPU state when a
VI Interrupt occurs. The problem with this is that we don't know
where the PC is so it's non-deterministic and not necessarily
suitable for use with the codehandler.
There are two options: Patch the game like Gecko OS either directly
or using HLE::Patch, or use a trampoline so we can branch from any
PC even if it would otherwise not be valid. The problem with Gecko OS
patches is there are 10 of them and they have to be configured
manually (i.e. Game INIs to would need to have a [Core]GeckoHookType
property).
HLE_Misc::GeckoReturnTrampoline enables the Code Handler to be
entered from anywhere, the trampoline restores all the registers that
had to be secretly saved to the stack.
If the installation fails because codehandler.bin is missing or
unusable then Dolphin will try again every single frame even though
it's highly unlikely a disk file will have changed. Better to just
fail once then only try again when the active code set is changed.
Suppresses generating 60 log messages per second.
Turns out one of the magic numbers was very magic. The gameid is
an ad-hoc comm protocol with HLE_Misc to control the number of times
the ICache is reset.
The code table builder cuts off the end of codes that won't fit
after already writing part of it. That seems quite unlikely to
work the way anyone would find useful since the codes can contain
actual PPC instructions.
The active codes vector cannot safely be used outside the mutex,
move the lock out into RunCodeHandler. s_code_handler_installed was
also racing against SetActiveCodes since it's being written both
inside and outside the lock.
General cleanup. Add s_ prefixes, use constexpr, remove C casts.
Executing PPC code inside an external events callback is a bad idea.
CoreTiming::Advance does not support recursion properly which will
cause timing glitches. The interpreter has a slice length hack that
counters this but without it this would cause a 20000 cycles time
skip. It isn't clear what this was supposed to accomplish that just
changing the current PC would not. Changing the PC works fine.
Replaces them with forward declarations of used types, or removes them entirely if they aren't used at all. This also replaces certain Common headers with less inclusive ones (in terms of definitions they pull in).
The PowerPC CPU has bits in MSR (DR and IR) which control whether
addresses are translated. We should respect these instead of mixing
physical addresses and translated addresses into the same address space.
This is mostly mass-renaming calls to memory accesses APIs from places
which expect address translation to use a different version from those
which do not expect address translation.
This does very little on its own, but it's the first step to a correct BAT
implementation.