KawPow WIP
This commit is contained in:
parent
07025dc41b
commit
22b937cc1c
88 changed files with 11004 additions and 8383 deletions
|
@ -29,7 +29,7 @@
|
|||
|
||||
#include "crypto/astrobwt/AstroBWT.h"
|
||||
#include "backend/cpu/Cpu.h"
|
||||
#include "crypto/astrobwt/sha3.h"
|
||||
#include "base/crypto/sha3.h"
|
||||
#include "crypto/cn/CryptoNight.h"
|
||||
|
||||
|
||||
|
|
|
@ -1,258 +0,0 @@
|
|||
/* -------------------------------------------------------------------------
|
||||
* Works when compiled for either 32-bit or 64-bit targets, optimized for
|
||||
* 64 bit.
|
||||
*
|
||||
* Canonical implementation of Init/Update/Finalize for SHA-3 byte input.
|
||||
*
|
||||
* SHA3-256, SHA3-384, SHA-512 are implemented. SHA-224 can easily be added.
|
||||
*
|
||||
* Based on code from http://keccak.noekeon.org/ .
|
||||
*
|
||||
* I place the code that I wrote into public domain, free to use.
|
||||
*
|
||||
* I would appreciate if you give credits to this work if you used it to
|
||||
* write or test * your code.
|
||||
*
|
||||
* Aug 2015. Andrey Jivsov. crypto@brainhub.org
|
||||
* ---------------------------------------------------------------------- */
|
||||
|
||||
#include <cstdio>
|
||||
#include <cstdint>
|
||||
#include <cstring>
|
||||
|
||||
#include "sha3.h"
|
||||
#include "base/crypto/keccak.h"
|
||||
|
||||
#define SHA3_ASSERT( x )
|
||||
#if defined(_MSC_VER)
|
||||
#define SHA3_TRACE( format, ...)
|
||||
#define SHA3_TRACE_BUF( format, buf, l, ...)
|
||||
#else
|
||||
#define SHA3_TRACE(format, args...)
|
||||
#define SHA3_TRACE_BUF(format, buf, l, args...)
|
||||
#endif
|
||||
|
||||
/*
|
||||
* This flag is used to configure "pure" Keccak, as opposed to NIST SHA3.
|
||||
*/
|
||||
#define SHA3_USE_KECCAK_FLAG 0x80000000
|
||||
#define SHA3_CW(x) ((x) & (~SHA3_USE_KECCAK_FLAG))
|
||||
|
||||
|
||||
#if defined(_MSC_VER)
|
||||
#define SHA3_CONST(x) x
|
||||
#else
|
||||
#define SHA3_CONST(x) x##L
|
||||
#endif
|
||||
|
||||
#define KECCAK_ROUNDS 24
|
||||
|
||||
|
||||
/* *************************** Public Inteface ************************ */
|
||||
|
||||
/* For Init or Reset call these: */
|
||||
sha3_return_t
|
||||
sha3_Init(void *priv, unsigned bitSize) {
|
||||
sha3_context *ctx = (sha3_context *) priv;
|
||||
if( bitSize != 256 && bitSize != 384 && bitSize != 512 )
|
||||
return SHA3_RETURN_BAD_PARAMS;
|
||||
memset(ctx, 0, sizeof(*ctx));
|
||||
ctx->capacityWords = 2 * bitSize / (8 * sizeof(uint64_t));
|
||||
return SHA3_RETURN_OK;
|
||||
}
|
||||
|
||||
void
|
||||
sha3_Init256(void *priv)
|
||||
{
|
||||
sha3_Init(priv, 256);
|
||||
}
|
||||
|
||||
void
|
||||
sha3_Init384(void *priv)
|
||||
{
|
||||
sha3_Init(priv, 384);
|
||||
}
|
||||
|
||||
void
|
||||
sha3_Init512(void *priv)
|
||||
{
|
||||
sha3_Init(priv, 512);
|
||||
}
|
||||
|
||||
SHA3_FLAGS
|
||||
sha3_SetFlags(void *priv, SHA3_FLAGS flags)
|
||||
{
|
||||
sha3_context *ctx = (sha3_context *) priv;
|
||||
flags = static_cast<SHA3_FLAGS>(static_cast<int>(flags) & SHA3_FLAGS_KECCAK);
|
||||
ctx->capacityWords |= (flags == SHA3_FLAGS_KECCAK ? SHA3_USE_KECCAK_FLAG : 0);
|
||||
return flags;
|
||||
}
|
||||
|
||||
|
||||
void
|
||||
sha3_Update(void *priv, void const *bufIn, size_t len)
|
||||
{
|
||||
sha3_context *ctx = (sha3_context *) priv;
|
||||
|
||||
/* 0...7 -- how much is needed to have a word */
|
||||
unsigned old_tail = (8 - ctx->byteIndex) & 7;
|
||||
|
||||
size_t words;
|
||||
unsigned tail;
|
||||
size_t i;
|
||||
|
||||
const uint8_t *buf = reinterpret_cast<const uint8_t*>(bufIn);
|
||||
|
||||
SHA3_TRACE_BUF("called to update with:", buf, len);
|
||||
|
||||
SHA3_ASSERT(ctx->byteIndex < 8);
|
||||
SHA3_ASSERT(ctx->wordIndex < sizeof(ctx->s) / sizeof(ctx->s[0]));
|
||||
|
||||
if(len < old_tail) { /* have no complete word or haven't started
|
||||
* the word yet */
|
||||
SHA3_TRACE("because %d<%d, store it and return", (unsigned)len,
|
||||
(unsigned)old_tail);
|
||||
/* endian-independent code follows: */
|
||||
while (len--)
|
||||
ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
|
||||
SHA3_ASSERT(ctx->byteIndex < 8);
|
||||
return;
|
||||
}
|
||||
|
||||
if(old_tail) { /* will have one word to process */
|
||||
SHA3_TRACE("completing one word with %d bytes", (unsigned)old_tail);
|
||||
/* endian-independent code follows: */
|
||||
len -= old_tail;
|
||||
while (old_tail--)
|
||||
ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
|
||||
|
||||
/* now ready to add saved to the sponge */
|
||||
ctx->s[ctx->wordIndex] ^= ctx->saved;
|
||||
SHA3_ASSERT(ctx->byteIndex == 8);
|
||||
ctx->byteIndex = 0;
|
||||
ctx->saved = 0;
|
||||
if(++ctx->wordIndex ==
|
||||
(SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords))) {
|
||||
xmrig::keccakf(ctx->s, KECCAK_ROUNDS);
|
||||
ctx->wordIndex = 0;
|
||||
}
|
||||
}
|
||||
|
||||
/* now work in full words directly from input */
|
||||
|
||||
SHA3_ASSERT(ctx->byteIndex == 0);
|
||||
|
||||
words = len / sizeof(uint64_t);
|
||||
tail = len - words * sizeof(uint64_t);
|
||||
|
||||
SHA3_TRACE("have %d full words to process", (unsigned)words);
|
||||
|
||||
for(i = 0; i < words; i++, buf += sizeof(uint64_t)) {
|
||||
const uint64_t t = (uint64_t) (buf[0]) |
|
||||
((uint64_t) (buf[1]) << 8 * 1) |
|
||||
((uint64_t) (buf[2]) << 8 * 2) |
|
||||
((uint64_t) (buf[3]) << 8 * 3) |
|
||||
((uint64_t) (buf[4]) << 8 * 4) |
|
||||
((uint64_t) (buf[5]) << 8 * 5) |
|
||||
((uint64_t) (buf[6]) << 8 * 6) |
|
||||
((uint64_t) (buf[7]) << 8 * 7);
|
||||
#if defined(__x86_64__ ) || defined(__i386__)
|
||||
SHA3_ASSERT(memcmp(&t, buf, 8) == 0);
|
||||
#endif
|
||||
ctx->s[ctx->wordIndex] ^= t;
|
||||
if(++ctx->wordIndex ==
|
||||
(SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords))) {
|
||||
xmrig::keccakf(ctx->s, KECCAK_ROUNDS);
|
||||
ctx->wordIndex = 0;
|
||||
}
|
||||
}
|
||||
|
||||
SHA3_TRACE("have %d bytes left to process, save them", (unsigned)tail);
|
||||
|
||||
/* finally, save the partial word */
|
||||
SHA3_ASSERT(ctx->byteIndex == 0 && tail < 8);
|
||||
while (tail--) {
|
||||
SHA3_TRACE("Store byte %02x '%c'", *buf, *buf);
|
||||
ctx->saved |= (uint64_t) (*(buf++)) << ((ctx->byteIndex++) * 8);
|
||||
}
|
||||
SHA3_ASSERT(ctx->byteIndex < 8);
|
||||
SHA3_TRACE("Have saved=0x%016" PRIx64 " at the end", ctx->saved);
|
||||
}
|
||||
|
||||
/* This is simply the 'update' with the padding block.
|
||||
* The padding block is 0x01 || 0x00* || 0x80. First 0x01 and last 0x80
|
||||
* bytes are always present, but they can be the same byte.
|
||||
*/
|
||||
void const *
|
||||
sha3_Finalize(void *priv)
|
||||
{
|
||||
sha3_context *ctx = (sha3_context *) priv;
|
||||
|
||||
SHA3_TRACE("called with %d bytes in the buffer", ctx->byteIndex);
|
||||
|
||||
/* Append 2-bit suffix 01, per SHA-3 spec. Instead of 1 for padding we
|
||||
* use 1<<2 below. The 0x02 below corresponds to the suffix 01.
|
||||
* Overall, we feed 0, then 1, and finally 1 to start padding. Without
|
||||
* M || 01, we would simply use 1 to start padding. */
|
||||
|
||||
uint64_t t;
|
||||
|
||||
if( ctx->capacityWords & SHA3_USE_KECCAK_FLAG ) {
|
||||
/* Keccak version */
|
||||
t = (uint64_t)(((uint64_t) 1) << (ctx->byteIndex * 8));
|
||||
}
|
||||
else {
|
||||
/* SHA3 version */
|
||||
t = (uint64_t)(((uint64_t)(0x02 | (1 << 2))) << ((ctx->byteIndex) * 8));
|
||||
}
|
||||
|
||||
ctx->s[ctx->wordIndex] ^= ctx->saved ^ t;
|
||||
|
||||
ctx->s[SHA3_KECCAK_SPONGE_WORDS - SHA3_CW(ctx->capacityWords) - 1] ^=
|
||||
SHA3_CONST(0x8000000000000000UL);
|
||||
xmrig::keccakf(ctx->s, KECCAK_ROUNDS);
|
||||
|
||||
/* Return first bytes of the ctx->s. This conversion is not needed for
|
||||
* little-endian platforms e.g. wrap with #if !defined(__BYTE_ORDER__)
|
||||
* || !defined(__ORDER_LITTLE_ENDIAN__) || __BYTE_ORDER__!=__ORDER_LITTLE_ENDIAN__
|
||||
* ... the conversion below ...
|
||||
* #endif */
|
||||
{
|
||||
unsigned i;
|
||||
for(i = 0; i < SHA3_KECCAK_SPONGE_WORDS; i++) {
|
||||
const unsigned t1 = (uint32_t) ctx->s[i];
|
||||
const unsigned t2 = (uint32_t) ((ctx->s[i] >> 16) >> 16);
|
||||
ctx->sb[i * 8 + 0] = (uint8_t) (t1);
|
||||
ctx->sb[i * 8 + 1] = (uint8_t) (t1 >> 8);
|
||||
ctx->sb[i * 8 + 2] = (uint8_t) (t1 >> 16);
|
||||
ctx->sb[i * 8 + 3] = (uint8_t) (t1 >> 24);
|
||||
ctx->sb[i * 8 + 4] = (uint8_t) (t2);
|
||||
ctx->sb[i * 8 + 5] = (uint8_t) (t2 >> 8);
|
||||
ctx->sb[i * 8 + 6] = (uint8_t) (t2 >> 16);
|
||||
ctx->sb[i * 8 + 7] = (uint8_t) (t2 >> 24);
|
||||
}
|
||||
}
|
||||
|
||||
SHA3_TRACE_BUF("Hash: (first 32 bytes)", ctx->sb, 256 / 8);
|
||||
|
||||
return (ctx->sb);
|
||||
}
|
||||
|
||||
sha3_return_t sha3_HashBuffer( unsigned bitSize, enum SHA3_FLAGS flags, const void *in, unsigned inBytes, void *out, unsigned outBytes ) {
|
||||
sha3_return_t err;
|
||||
sha3_context c;
|
||||
|
||||
err = sha3_Init(&c, bitSize);
|
||||
if( err != SHA3_RETURN_OK )
|
||||
return err;
|
||||
if( sha3_SetFlags(&c, flags) != flags ) {
|
||||
return SHA3_RETURN_BAD_PARAMS;
|
||||
}
|
||||
sha3_Update(&c, in, inBytes);
|
||||
const void *h = sha3_Finalize(&c);
|
||||
|
||||
if(outBytes > bitSize/8)
|
||||
outBytes = bitSize/8;
|
||||
memcpy(out, h, outBytes);
|
||||
return SHA3_RETURN_OK;
|
||||
}
|
|
@ -1,71 +0,0 @@
|
|||
#ifndef SHA3_H
|
||||
#define SHA3_H
|
||||
|
||||
/* -------------------------------------------------------------------------
|
||||
* Works when compiled for either 32-bit or 64-bit targets, optimized for
|
||||
* 64 bit.
|
||||
*
|
||||
* Canonical implementation of Init/Update/Finalize for SHA-3 byte input.
|
||||
*
|
||||
* SHA3-256, SHA3-384, SHA-512 are implemented. SHA-224 can easily be added.
|
||||
*
|
||||
* Based on code from http://keccak.noekeon.org/ .
|
||||
*
|
||||
* I place the code that I wrote into public domain, free to use.
|
||||
*
|
||||
* I would appreciate if you give credits to this work if you used it to
|
||||
* write or test * your code.
|
||||
*
|
||||
* Aug 2015. Andrey Jivsov. crypto@brainhub.org
|
||||
* ---------------------------------------------------------------------- */
|
||||
|
||||
/* 'Words' here refers to uint64_t */
|
||||
#define SHA3_KECCAK_SPONGE_WORDS \
|
||||
(((1600)/8/*bits to byte*/)/sizeof(uint64_t))
|
||||
typedef struct sha3_context_ {
|
||||
uint64_t saved; /* the portion of the input message that we
|
||||
* didn't consume yet */
|
||||
union { /* Keccak's state */
|
||||
uint64_t s[SHA3_KECCAK_SPONGE_WORDS];
|
||||
uint8_t sb[SHA3_KECCAK_SPONGE_WORDS * 8];
|
||||
};
|
||||
unsigned byteIndex; /* 0..7--the next byte after the set one
|
||||
* (starts from 0; 0--none are buffered) */
|
||||
unsigned wordIndex; /* 0..24--the next word to integrate input
|
||||
* (starts from 0) */
|
||||
unsigned capacityWords; /* the double size of the hash output in
|
||||
* words (e.g. 16 for Keccak 512) */
|
||||
} sha3_context;
|
||||
|
||||
enum SHA3_FLAGS {
|
||||
SHA3_FLAGS_NONE=0,
|
||||
SHA3_FLAGS_KECCAK=1
|
||||
};
|
||||
|
||||
enum SHA3_RETURN {
|
||||
SHA3_RETURN_OK=0,
|
||||
SHA3_RETURN_BAD_PARAMS=1
|
||||
};
|
||||
typedef enum SHA3_RETURN sha3_return_t;
|
||||
|
||||
/* For Init or Reset call these: */
|
||||
sha3_return_t sha3_Init(void *priv, unsigned bitSize);
|
||||
|
||||
void sha3_Init256(void *priv);
|
||||
void sha3_Init384(void *priv);
|
||||
void sha3_Init512(void *priv);
|
||||
|
||||
SHA3_FLAGS sha3_SetFlags(void *priv, SHA3_FLAGS);
|
||||
|
||||
void sha3_Update(void *priv, void const *bufIn, size_t len);
|
||||
|
||||
void const *sha3_Finalize(void *priv);
|
||||
|
||||
/* Single-call hashing */
|
||||
sha3_return_t sha3_HashBuffer(
|
||||
unsigned bitSize, /* 256, 384, 512 */
|
||||
SHA3_FLAGS flags, /* SHA3_FLAGS_NONE or SHA3_FLAGS_KECCAK */
|
||||
const void *in, unsigned inBytes,
|
||||
void *out, unsigned outBytes ); /* up to bitSize/8; truncation OK */
|
||||
|
||||
#endif
|
|
@ -89,11 +89,6 @@ public:
|
|||
case Algorithm::CN_DOUBLE:
|
||||
return CN_ITER * 2;
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_GPU
|
||||
case Algorithm::CN_GPU:
|
||||
return 0xC000;
|
||||
# endif
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_PICO
|
||||
case Algorithm::CN_PICO_0:
|
||||
case Algorithm::CN_PICO_TLO:
|
||||
|
@ -109,12 +104,6 @@ public:
|
|||
|
||||
inline static uint32_t mask(Algorithm::Id algo)
|
||||
{
|
||||
# ifdef XMRIG_ALGO_CN_GPU
|
||||
if (algo == Algorithm::CN_GPU) {
|
||||
return 0x1FFFC0;
|
||||
}
|
||||
# endif
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_PICO
|
||||
if (algo == Algorithm::CN_PICO_0) {
|
||||
return 0x1FFF0;
|
||||
|
@ -161,11 +150,6 @@ public:
|
|||
# endif
|
||||
return Algorithm::CN_2;
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_GPU
|
||||
case Algorithm::CN_GPU:
|
||||
return Algorithm::CN_GPU;
|
||||
# endif
|
||||
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -202,7 +186,6 @@ template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_XAO>::iterations() con
|
|||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_DOUBLE>::iterations() const { return CN_ITER * 2; }
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_RWZ>::iterations() const { return 0x60000; }
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_ZLS>::iterations() const { return 0x60000; }
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_GPU>::iterations() const { return 0xC000; }
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_PICO_0>::iterations() const { return CN_ITER / 8; }
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_PICO_TLO>::iterations() const { return CN_ITER / 8; }
|
||||
|
||||
|
@ -216,7 +199,6 @@ template<> constexpr inline size_t CnAlgo<Algorithm::CN_PICO_0>::memory() const
|
|||
template<> constexpr inline size_t CnAlgo<Algorithm::CN_PICO_TLO>::memory() const { return CN_MEMORY / 8; }
|
||||
|
||||
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_GPU>::mask() const { return 0x1FFFC0; }
|
||||
template<> constexpr inline uint32_t CnAlgo<Algorithm::CN_PICO_0>::mask() const { return 0x1FFF0; }
|
||||
|
||||
|
||||
|
|
|
@ -252,11 +252,6 @@ xmrig::CnHash::CnHash()
|
|||
ADD_FN_ASM(Algorithm::CN_ZLS);
|
||||
ADD_FN_ASM(Algorithm::CN_DOUBLE);
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_GPU
|
||||
m_map[Algorithm::CN_GPU][AV_SINGLE][Assembly::NONE] = cryptonight_single_hash_gpu<Algorithm::CN_GPU, false>;
|
||||
m_map[Algorithm::CN_GPU][AV_SINGLE_SOFT][Assembly::NONE] = cryptonight_single_hash_gpu<Algorithm::CN_GPU, true>;
|
||||
# endif
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_LITE
|
||||
ADD_FN(Algorithm::CN_LITE_0);
|
||||
ADD_FN(Algorithm::CN_LITE_1);
|
||||
|
|
|
@ -294,11 +294,7 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
|||
{
|
||||
constexpr CnAlgo<ALGO> props;
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_GPU
|
||||
constexpr bool IS_HEAVY = props.isHeavy() || ALGO == Algorithm::CN_GPU;
|
||||
# else
|
||||
constexpr bool IS_HEAVY = props.isHeavy();
|
||||
# endif
|
||||
|
||||
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
|
||||
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
||||
|
@ -580,66 +576,6 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
|
|||
}
|
||||
|
||||
|
||||
} /* namespace xmrig */
|
||||
|
||||
|
||||
#ifdef XMRIG_ALGO_CN_GPU
|
||||
template<size_t ITER, uint32_t MASK>
|
||||
void cn_gpu_inner_arm(const uint8_t *spad, uint8_t *lpad);
|
||||
|
||||
|
||||
namespace xmrig {
|
||||
|
||||
|
||||
template<size_t MEM>
|
||||
void cn_explode_scratchpad_gpu(const uint8_t *input, uint8_t *output)
|
||||
{
|
||||
constexpr size_t hash_size = 200; // 25x8 bytes
|
||||
alignas(16) uint64_t hash[25];
|
||||
|
||||
for (uint64_t i = 0; i < MEM / 512; i++) {
|
||||
memcpy(hash, input, hash_size);
|
||||
hash[0] ^= i;
|
||||
|
||||
xmrig::keccakf(hash, 24);
|
||||
memcpy(output, hash, 160);
|
||||
output += 160;
|
||||
|
||||
xmrig::keccakf(hash, 24);
|
||||
memcpy(output, hash, 176);
|
||||
output += 176;
|
||||
|
||||
xmrig::keccakf(hash, 24);
|
||||
memcpy(output, hash, 176);
|
||||
output += 176;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<xmrig::Algorithm::Id ALGO, bool SOFT_AES>
|
||||
inline void cryptonight_single_hash_gpu(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
||||
{
|
||||
constexpr CnAlgo<ALGO> props;
|
||||
|
||||
keccak(input, size, ctx[0]->state);
|
||||
cn_explode_scratchpad_gpu<props.memory()>(ctx[0]->state, ctx[0]->memory);
|
||||
|
||||
fesetround(FE_TONEAREST);
|
||||
|
||||
cn_gpu_inner_arm<props.iterations(), props.mask()>(ctx[0]->state, ctx[0]->memory);
|
||||
|
||||
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(ctx[0]->memory), reinterpret_cast<__m128i *>(ctx[0]->state));
|
||||
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
|
||||
memcpy(output, ctx[0]->state, 32);
|
||||
}
|
||||
|
||||
} /* namespace xmrig */
|
||||
#endif
|
||||
|
||||
|
||||
namespace xmrig {
|
||||
|
||||
|
||||
template<Algorithm::Id ALGO, bool SOFT_AES>
|
||||
inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, struct cryptonight_ctx **__restrict__ ctx, uint64_t height)
|
||||
{
|
||||
|
|
|
@ -356,23 +356,6 @@ const static uint8_t test_output_pico_tlo[160] = {
|
|||
#endif
|
||||
|
||||
|
||||
#ifdef XMRIG_ALGO_CN_GPU
|
||||
// "cn/gpu"
|
||||
const static uint8_t test_output_gpu[160] = {
|
||||
0xE5, 0x5C, 0xB2, 0x3E, 0x51, 0x64, 0x9A, 0x59, 0xB1, 0x27, 0xB9, 0x6B, 0x51, 0x5F, 0x2B, 0xF7,
|
||||
0xBF, 0xEA, 0x19, 0x97, 0x41, 0xA0, 0x21, 0x6C, 0xF8, 0x38, 0xDE, 0xD0, 0x6E, 0xFF, 0x82, 0xDF,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
|
||||
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00
|
||||
};
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef XMRIG_ALGO_ARGON2
|
||||
// "argon2/chukwa"
|
||||
const static uint8_t argon2_chukwa_test_out[160] = {
|
||||
|
|
|
@ -371,11 +371,7 @@ static inline void cn_implode_scratchpad(const __m128i *input, __m128i *output)
|
|||
{
|
||||
constexpr CnAlgo<ALGO> props;
|
||||
|
||||
# ifdef XMRIG_ALGO_CN_GPU
|
||||
constexpr bool IS_HEAVY = props.isHeavy() || ALGO == Algorithm::CN_GPU;
|
||||
# else
|
||||
constexpr bool IS_HEAVY = props.isHeavy();
|
||||
# endif
|
||||
|
||||
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
|
||||
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
|
||||
|
@ -702,73 +698,6 @@ inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t si
|
|||
} /* namespace xmrig */
|
||||
|
||||
|
||||
#ifdef XMRIG_ALGO_CN_GPU
|
||||
template<size_t ITER, uint32_t MASK>
|
||||
void cn_gpu_inner_avx(const uint8_t *spad, uint8_t *lpad);
|
||||
|
||||
|
||||
template<size_t ITER, uint32_t MASK>
|
||||
void cn_gpu_inner_ssse3(const uint8_t *spad, uint8_t *lpad);
|
||||
|
||||
|
||||
namespace xmrig {
|
||||
|
||||
|
||||
template<size_t MEM>
|
||||
void cn_explode_scratchpad_gpu(const uint8_t *input, uint8_t *output)
|
||||
{
|
||||
constexpr size_t hash_size = 200; // 25x8 bytes
|
||||
alignas(16) uint64_t hash[25];
|
||||
|
||||
for (uint64_t i = 0; i < MEM / 512; i++) {
|
||||
memcpy(hash, input, hash_size);
|
||||
hash[0] ^= i;
|
||||
|
||||
xmrig::keccakf(hash, 24);
|
||||
memcpy(output, hash, 160);
|
||||
output += 160;
|
||||
|
||||
xmrig::keccakf(hash, 24);
|
||||
memcpy(output, hash, 176);
|
||||
output += 176;
|
||||
|
||||
xmrig::keccakf(hash, 24);
|
||||
memcpy(output, hash, 176);
|
||||
output += 176;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
template<Algorithm::Id ALGO, bool SOFT_AES>
|
||||
inline void cryptonight_single_hash_gpu(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t)
|
||||
{
|
||||
constexpr CnAlgo<ALGO> props;
|
||||
|
||||
keccak(input, size, ctx[0]->state);
|
||||
cn_explode_scratchpad_gpu<props.memory()>(ctx[0]->state, ctx[0]->memory);
|
||||
|
||||
# ifdef _MSC_VER
|
||||
_control87(RC_NEAR, MCW_RC);
|
||||
# else
|
||||
fesetround(FE_TONEAREST);
|
||||
# endif
|
||||
|
||||
if (xmrig::Cpu::info()->hasAVX2()) {
|
||||
cn_gpu_inner_avx<props.iterations(), props.mask()>(ctx[0]->state, ctx[0]->memory);
|
||||
} else {
|
||||
cn_gpu_inner_ssse3<props.iterations(), props.mask()>(ctx[0]->state, ctx[0]->memory);
|
||||
}
|
||||
|
||||
cn_implode_scratchpad<ALGO, SOFT_AES>(reinterpret_cast<const __m128i *>(ctx[0]->memory), reinterpret_cast<__m128i *>(ctx[0]->state));
|
||||
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
|
||||
memcpy(output, ctx[0]->state, 32);
|
||||
}
|
||||
|
||||
|
||||
} /* namespace xmrig */
|
||||
#endif
|
||||
|
||||
|
||||
#ifdef XMRIG_FEATURE_ASM
|
||||
extern "C" void cnv2_mainloop_ivybridge_asm(cryptonight_ctx **ctx);
|
||||
extern "C" void cnv2_mainloop_ryzen_asm(cryptonight_ctx **ctx);
|
||||
|
|
|
@ -1,240 +0,0 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2019 XMRig <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <arm_neon.h>
|
||||
|
||||
|
||||
#include "crypto/cn/CnAlgo.h"
|
||||
|
||||
|
||||
inline void vandq_f32(float32x4_t &v, uint32_t v2)
|
||||
{
|
||||
uint32x4_t vc = vdupq_n_u32(v2);
|
||||
v = (float32x4_t)vandq_u32((uint32x4_t)v, vc);
|
||||
}
|
||||
|
||||
|
||||
inline void vorq_f32(float32x4_t &v, uint32_t v2)
|
||||
{
|
||||
uint32x4_t vc = vdupq_n_u32(v2);
|
||||
v = (float32x4_t)vorrq_u32((uint32x4_t)v, vc);
|
||||
}
|
||||
|
||||
|
||||
template <size_t v>
|
||||
inline void vrot_si32(int32x4_t &r)
|
||||
{
|
||||
r = (int32x4_t)vextq_s8((int8x16_t)r, (int8x16_t)r, v);
|
||||
}
|
||||
|
||||
template <>
|
||||
inline void vrot_si32<0>(int32x4_t &r)
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
inline uint32_t vheor_s32(const int32x4_t &v)
|
||||
{
|
||||
int32x4_t v0 = veorq_s32(v, vrev64q_s32(v));
|
||||
int32x2_t vf = veor_s32(vget_high_s32(v0), vget_low_s32(v0));
|
||||
return (uint32_t)vget_lane_s32(vf, 0);
|
||||
}
|
||||
|
||||
|
||||
inline void prep_dv(int32_t *idx, int32x4_t &v, float32x4_t &n)
|
||||
{
|
||||
v = vld1q_s32(idx);
|
||||
n = vcvtq_f32_s32(v);
|
||||
}
|
||||
|
||||
|
||||
inline void sub_round(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, const float32x4_t &rnd_c, float32x4_t &n, float32x4_t &d, float32x4_t &c)
|
||||
{
|
||||
float32x4_t ln1 = vaddq_f32(n1, c);
|
||||
float32x4_t nn = vmulq_f32(n0, c);
|
||||
nn = vmulq_f32(ln1, vmulq_f32(nn, nn));
|
||||
vandq_f32(nn, 0xFEFFFFFF);
|
||||
vorq_f32(nn, 0x00800000);
|
||||
n = vaddq_f32(n, nn);
|
||||
|
||||
float32x4_t ln3 = vsubq_f32(n3, c);
|
||||
float32x4_t dd = vmulq_f32(n2, c);
|
||||
dd = vmulq_f32(ln3, vmulq_f32(dd, dd));
|
||||
vandq_f32(dd, 0xFEFFFFFF);
|
||||
vorq_f32(dd, 0x00800000);
|
||||
d = vaddq_f32(d, dd);
|
||||
|
||||
//Constant feedback
|
||||
c = vaddq_f32(c, rnd_c);
|
||||
c = vaddq_f32(c, vdupq_n_f32(0.734375f));
|
||||
float32x4_t r = vaddq_f32(nn, dd);
|
||||
vandq_f32(r, 0x807FFFFF);
|
||||
vorq_f32(r, 0x40000000);
|
||||
c = vaddq_f32(c, r);
|
||||
}
|
||||
|
||||
|
||||
inline void round_compute(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, const float32x4_t &rnd_c, float32x4_t &c, float32x4_t &r)
|
||||
{
|
||||
float32x4_t n = vdupq_n_f32(0.0f), d = vdupq_n_f32(0.0f);
|
||||
|
||||
sub_round(n0, n1, n2, n3, rnd_c, n, d, c);
|
||||
sub_round(n1, n2, n3, n0, rnd_c, n, d, c);
|
||||
sub_round(n2, n3, n0, n1, rnd_c, n, d, c);
|
||||
sub_round(n3, n0, n1, n2, rnd_c, n, d, c);
|
||||
sub_round(n3, n2, n1, n0, rnd_c, n, d, c);
|
||||
sub_round(n2, n1, n0, n3, rnd_c, n, d, c);
|
||||
sub_round(n1, n0, n3, n2, rnd_c, n, d, c);
|
||||
sub_round(n0, n3, n2, n1, rnd_c, n, d, c);
|
||||
|
||||
// Make sure abs(d) > 2.0 - this prevents division by zero and accidental overflows by division by < 1.0
|
||||
vandq_f32(d, 0xFF7FFFFF);
|
||||
vorq_f32(d, 0x40000000);
|
||||
r = vaddq_f32(r, vdivq_f32(n, d));
|
||||
}
|
||||
|
||||
|
||||
// 112×4 = 448
|
||||
template <bool add>
|
||||
inline int32x4_t single_compute(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, float cnt, const float32x4_t &rnd_c, float32x4_t &sum)
|
||||
{
|
||||
float32x4_t c = vdupq_n_f32(cnt);
|
||||
float32x4_t r = vdupq_n_f32(0.0f);
|
||||
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
|
||||
// do a quick fmod by setting exp to 2
|
||||
vandq_f32(r, 0x807FFFFF);
|
||||
vorq_f32(r, 0x40000000);
|
||||
|
||||
if (add) {
|
||||
sum = vaddq_f32(sum, r);
|
||||
} else {
|
||||
sum = r;
|
||||
}
|
||||
|
||||
const float32x4_t cc2 = vdupq_n_f32(536870880.0f);
|
||||
r = vmulq_f32(r, cc2); // 35
|
||||
return vcvtq_s32_f32(r);
|
||||
}
|
||||
|
||||
|
||||
template<size_t rot>
|
||||
inline void single_compute_wrap(const float32x4_t &n0, const float32x4_t &n1, const float32x4_t &n2, const float32x4_t &n3, float cnt, const float32x4_t &rnd_c, float32x4_t &sum, int32x4_t &out)
|
||||
{
|
||||
int32x4_t r = single_compute<rot % 2 != 0>(n0, n1, n2, n3, cnt, rnd_c, sum);
|
||||
vrot_si32<rot>(r);
|
||||
out = veorq_s32(out, r);
|
||||
}
|
||||
|
||||
|
||||
template<uint32_t MASK>
|
||||
inline int32_t *scratchpad_ptr(uint8_t* lpad, uint32_t idx, size_t n) { return reinterpret_cast<int32_t *>(lpad + (idx & MASK) + n * 16); }
|
||||
|
||||
|
||||
template<size_t ITER, uint32_t MASK>
|
||||
void cn_gpu_inner_arm(const uint8_t *spad, uint8_t *lpad)
|
||||
{
|
||||
uint32_t s = reinterpret_cast<const uint32_t*>(spad)[0] >> 8;
|
||||
int32_t *idx0 = scratchpad_ptr<MASK>(lpad, s, 0);
|
||||
int32_t *idx1 = scratchpad_ptr<MASK>(lpad, s, 1);
|
||||
int32_t *idx2 = scratchpad_ptr<MASK>(lpad, s, 2);
|
||||
int32_t *idx3 = scratchpad_ptr<MASK>(lpad, s, 3);
|
||||
float32x4_t sum0 = vdupq_n_f32(0.0f);
|
||||
|
||||
for (size_t i = 0; i < ITER; i++) {
|
||||
float32x4_t n0, n1, n2, n3;
|
||||
int32x4_t v0, v1, v2, v3;
|
||||
float32x4_t suma, sumb, sum1, sum2, sum3;
|
||||
|
||||
prep_dv(idx0, v0, n0);
|
||||
prep_dv(idx1, v1, n1);
|
||||
prep_dv(idx2, v2, n2);
|
||||
prep_dv(idx3, v3, n3);
|
||||
float32x4_t rc = sum0;
|
||||
|
||||
int32x4_t out, out2;
|
||||
out = vdupq_n_s32(0);
|
||||
single_compute_wrap<0>(n0, n1, n2, n3, 1.3437500f, rc, suma, out);
|
||||
single_compute_wrap<1>(n0, n2, n3, n1, 1.2812500f, rc, suma, out);
|
||||
single_compute_wrap<2>(n0, n3, n1, n2, 1.3593750f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n0, n3, n2, n1, 1.3671875f, rc, sumb, out);
|
||||
sum0 = vaddq_f32(suma, sumb);
|
||||
vst1q_s32(idx0, veorq_s32(v0, out));
|
||||
out2 = out;
|
||||
|
||||
out = vdupq_n_s32(0);
|
||||
single_compute_wrap<0>(n1, n0, n2, n3, 1.4296875f, rc, suma, out);
|
||||
single_compute_wrap<1>(n1, n2, n3, n0, 1.3984375f, rc, suma, out);
|
||||
single_compute_wrap<2>(n1, n3, n0, n2, 1.3828125f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n1, n3, n2, n0, 1.3046875f, rc, sumb, out);
|
||||
sum1 = vaddq_f32(suma, sumb);
|
||||
vst1q_s32(idx1, veorq_s32(v1, out));
|
||||
out2 = veorq_s32(out2, out);
|
||||
|
||||
out = vdupq_n_s32(0);
|
||||
single_compute_wrap<0>(n2, n1, n0, n3, 1.4140625f, rc, suma, out);
|
||||
single_compute_wrap<1>(n2, n0, n3, n1, 1.2734375f, rc, suma, out);
|
||||
single_compute_wrap<2>(n2, n3, n1, n0, 1.2578125f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n2, n3, n0, n1, 1.2890625f, rc, sumb, out);
|
||||
sum2 = vaddq_f32(suma, sumb);
|
||||
vst1q_s32(idx2, veorq_s32(v2, out));
|
||||
out2 = veorq_s32(out2, out);
|
||||
|
||||
out = vdupq_n_s32(0);
|
||||
single_compute_wrap<0>(n3, n1, n2, n0, 1.3203125f, rc, suma, out);
|
||||
single_compute_wrap<1>(n3, n2, n0, n1, 1.3515625f, rc, suma, out);
|
||||
single_compute_wrap<2>(n3, n0, n1, n2, 1.3359375f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n3, n0, n2, n1, 1.4609375f, rc, sumb, out);
|
||||
sum3 = vaddq_f32(suma, sumb);
|
||||
vst1q_s32(idx3, veorq_s32(v3, out));
|
||||
out2 = veorq_s32(out2, out);
|
||||
|
||||
sum0 = vaddq_f32(sum0, sum1);
|
||||
sum2 = vaddq_f32(sum2, sum3);
|
||||
sum0 = vaddq_f32(sum0, sum2);
|
||||
|
||||
const float32x4_t cc1 = vdupq_n_f32(16777216.0f);
|
||||
const float32x4_t cc2 = vdupq_n_f32(64.0f);
|
||||
vandq_f32(sum0, 0x7fffffff); // take abs(va) by masking the float sign bit
|
||||
// vs range 0 - 64
|
||||
n0 = vmulq_f32(sum0, cc1);
|
||||
v0 = vcvtq_s32_f32(n0);
|
||||
v0 = veorq_s32(v0, out2);
|
||||
uint32_t n = vheor_s32(v0);
|
||||
|
||||
// vs is now between 0 and 1
|
||||
sum0 = vdivq_f32(sum0, cc2);
|
||||
idx0 = scratchpad_ptr<MASK>(lpad, n, 0);
|
||||
idx1 = scratchpad_ptr<MASK>(lpad, n, 1);
|
||||
idx2 = scratchpad_ptr<MASK>(lpad, n, 2);
|
||||
idx3 = scratchpad_ptr<MASK>(lpad, n, 3);
|
||||
}
|
||||
}
|
||||
|
||||
template void cn_gpu_inner_arm<xmrig::CnAlgo<xmrig::Algorithm::CN_GPU>().iterations(), xmrig::CnAlgo<xmrig::Algorithm::CN_GPU>().mask()>(const uint8_t* spad, uint8_t* lpad);
|
|
@ -1,211 +0,0 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2020 XMRig <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "crypto/cn/CnAlgo.h"
|
||||
|
||||
|
||||
#ifdef __GNUC__
|
||||
# include <x86intrin.h>
|
||||
#else
|
||||
# include <intrin.h>
|
||||
# define __restrict__ __restrict
|
||||
#endif
|
||||
#ifndef _mm256_bslli_epi128
|
||||
#define _mm256_bslli_epi128(a, count) _mm256_slli_si256((a), (count))
|
||||
#endif
|
||||
#ifndef _mm256_bsrli_epi128
|
||||
#define _mm256_bsrli_epi128(a, count) _mm256_srli_si256((a), (count))
|
||||
#endif
|
||||
|
||||
inline void prep_dv_avx(__m256i* idx, __m256i& v, __m256& n01)
|
||||
{
|
||||
v = _mm256_load_si256(idx);
|
||||
n01 = _mm256_cvtepi32_ps(v);
|
||||
}
|
||||
|
||||
inline __m256 fma_break(const __m256& x)
|
||||
{
|
||||
// Break the dependency chain by setitng the exp to ?????01
|
||||
__m256 xx = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0xFEFFFFFF)), x);
|
||||
return _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x00800000)), xx);
|
||||
}
|
||||
|
||||
// 14
|
||||
inline void sub_round(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3, const __m256& rnd_c, __m256& n, __m256& d, __m256& c)
|
||||
{
|
||||
__m256 nn = _mm256_mul_ps(n0, c);
|
||||
nn = _mm256_mul_ps(_mm256_add_ps(n1, c), _mm256_mul_ps(nn, nn));
|
||||
nn = fma_break(nn);
|
||||
n = _mm256_add_ps(n, nn);
|
||||
|
||||
__m256 dd = _mm256_mul_ps(n2, c);
|
||||
dd = _mm256_mul_ps(_mm256_sub_ps(n3, c), _mm256_mul_ps(dd, dd));
|
||||
dd = fma_break(dd);
|
||||
d = _mm256_add_ps(d, dd);
|
||||
|
||||
//Constant feedback
|
||||
c = _mm256_add_ps(c, rnd_c);
|
||||
c = _mm256_add_ps(c, _mm256_set1_ps(0.734375f));
|
||||
__m256 r = _mm256_add_ps(nn, dd);
|
||||
r = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x807FFFFF)), r);
|
||||
r = _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x40000000)), r);
|
||||
c = _mm256_add_ps(c, r);
|
||||
}
|
||||
|
||||
// 14*8 + 2 = 112
|
||||
inline void round_compute(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3, const __m256& rnd_c, __m256& c, __m256& r)
|
||||
{
|
||||
__m256 n = _mm256_setzero_ps(), d = _mm256_setzero_ps();
|
||||
|
||||
sub_round(n0, n1, n2, n3, rnd_c, n, d, c);
|
||||
sub_round(n1, n2, n3, n0, rnd_c, n, d, c);
|
||||
sub_round(n2, n3, n0, n1, rnd_c, n, d, c);
|
||||
sub_round(n3, n0, n1, n2, rnd_c, n, d, c);
|
||||
sub_round(n3, n2, n1, n0, rnd_c, n, d, c);
|
||||
sub_round(n2, n1, n0, n3, rnd_c, n, d, c);
|
||||
sub_round(n1, n0, n3, n2, rnd_c, n, d, c);
|
||||
sub_round(n0, n3, n2, n1, rnd_c, n, d, c);
|
||||
|
||||
// Make sure abs(d) > 2.0 - this prevents division by zero and accidental overflows by division by < 1.0
|
||||
d = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0xFF7FFFFF)), d);
|
||||
d = _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x40000000)), d);
|
||||
r = _mm256_add_ps(r, _mm256_div_ps(n, d));
|
||||
}
|
||||
|
||||
// 112×4 = 448
|
||||
template <bool add>
|
||||
inline __m256i double_compute(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3,
|
||||
float lcnt, float hcnt, const __m256& rnd_c, __m256& sum)
|
||||
{
|
||||
__m256 c = _mm256_insertf128_ps(_mm256_castps128_ps256(_mm_set1_ps(lcnt)), _mm_set1_ps(hcnt), 1);
|
||||
__m256 r = _mm256_setzero_ps();
|
||||
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
|
||||
// do a quick fmod by setting exp to 2
|
||||
r = _mm256_and_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x807FFFFF)), r);
|
||||
r = _mm256_or_ps(_mm256_castsi256_ps(_mm256_set1_epi32(0x40000000)), r);
|
||||
|
||||
if(add)
|
||||
sum = _mm256_add_ps(sum, r);
|
||||
else
|
||||
sum = r;
|
||||
|
||||
r = _mm256_mul_ps(r, _mm256_set1_ps(536870880.0f)); // 35
|
||||
return _mm256_cvttps_epi32(r);
|
||||
}
|
||||
|
||||
template <size_t rot>
|
||||
inline void double_compute_wrap(const __m256& n0, const __m256& n1, const __m256& n2, const __m256& n3,
|
||||
float lcnt, float hcnt, const __m256& rnd_c, __m256& sum, __m256i& out)
|
||||
{
|
||||
__m256i r = double_compute<rot % 2 != 0>(n0, n1, n2, n3, lcnt, hcnt, rnd_c, sum);
|
||||
if(rot != 0)
|
||||
r = _mm256_or_si256(_mm256_bslli_epi128(r, 16 - rot), _mm256_bsrli_epi128(r, rot));
|
||||
|
||||
out = _mm256_xor_si256(out, r);
|
||||
}
|
||||
|
||||
template<uint32_t MASK>
|
||||
inline __m256i* scratchpad_ptr(uint8_t* lpad, uint32_t idx, size_t n) { return reinterpret_cast<__m256i*>(lpad + (idx & MASK) + n*16); }
|
||||
|
||||
template<size_t ITER, uint32_t MASK>
|
||||
void cn_gpu_inner_avx(const uint8_t* spad, uint8_t* lpad)
|
||||
{
|
||||
uint32_t s = reinterpret_cast<const uint32_t*>(spad)[0] >> 8;
|
||||
__m256i* idx0 = scratchpad_ptr<MASK>(lpad, s, 0);
|
||||
__m256i* idx2 = scratchpad_ptr<MASK>(lpad, s, 2);
|
||||
__m256 sum0 = _mm256_setzero_ps();
|
||||
|
||||
for(size_t i = 0; i < ITER; i++)
|
||||
{
|
||||
__m256i v01, v23;
|
||||
__m256 suma, sumb, sum1;
|
||||
__m256 rc = sum0;
|
||||
|
||||
__m256 n01, n23;
|
||||
prep_dv_avx(idx0, v01, n01);
|
||||
prep_dv_avx(idx2, v23, n23);
|
||||
|
||||
__m256i out, out2;
|
||||
__m256 n10, n22, n33;
|
||||
n10 = _mm256_permute2f128_ps(n01, n01, 0x01);
|
||||
n22 = _mm256_permute2f128_ps(n23, n23, 0x00);
|
||||
n33 = _mm256_permute2f128_ps(n23, n23, 0x11);
|
||||
|
||||
out = _mm256_setzero_si256();
|
||||
double_compute_wrap<0>(n01, n10, n22, n33, 1.3437500f, 1.4296875f, rc, suma, out);
|
||||
double_compute_wrap<1>(n01, n22, n33, n10, 1.2812500f, 1.3984375f, rc, suma, out);
|
||||
double_compute_wrap<2>(n01, n33, n10, n22, 1.3593750f, 1.3828125f, rc, sumb, out);
|
||||
double_compute_wrap<3>(n01, n33, n22, n10, 1.3671875f, 1.3046875f, rc, sumb, out);
|
||||
_mm256_store_si256(idx0, _mm256_xor_si256(v01, out));
|
||||
sum0 = _mm256_add_ps(suma, sumb);
|
||||
out2 = out;
|
||||
|
||||
__m256 n11, n02, n30;
|
||||
n11 = _mm256_permute2f128_ps(n01, n01, 0x11);
|
||||
n02 = _mm256_permute2f128_ps(n01, n23, 0x20);
|
||||
n30 = _mm256_permute2f128_ps(n01, n23, 0x03);
|
||||
|
||||
out = _mm256_setzero_si256();
|
||||
double_compute_wrap<0>(n23, n11, n02, n30, 1.4140625f, 1.3203125f, rc, suma, out);
|
||||
double_compute_wrap<1>(n23, n02, n30, n11, 1.2734375f, 1.3515625f, rc, suma, out);
|
||||
double_compute_wrap<2>(n23, n30, n11, n02, 1.2578125f, 1.3359375f, rc, sumb, out);
|
||||
double_compute_wrap<3>(n23, n30, n02, n11, 1.2890625f, 1.4609375f, rc, sumb, out);
|
||||
_mm256_store_si256(idx2, _mm256_xor_si256(v23, out));
|
||||
sum1 = _mm256_add_ps(suma, sumb);
|
||||
|
||||
out2 = _mm256_xor_si256(out2, out);
|
||||
out2 = _mm256_xor_si256(_mm256_permute2x128_si256(out2,out2,0x41), out2);
|
||||
suma = _mm256_permute2f128_ps(sum0, sum1, 0x30);
|
||||
sumb = _mm256_permute2f128_ps(sum0, sum1, 0x21);
|
||||
sum0 = _mm256_add_ps(suma, sumb);
|
||||
sum0 = _mm256_add_ps(sum0, _mm256_permute2f128_ps(sum0, sum0, 0x41));
|
||||
|
||||
// Clear the high 128 bits
|
||||
__m128 sum = _mm256_castps256_ps128(sum0);
|
||||
|
||||
sum = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)), sum); // take abs(va) by masking the float sign bit
|
||||
// vs range 0 - 64
|
||||
__m128i v0 = _mm_cvttps_epi32(_mm_mul_ps(sum, _mm_set1_ps(16777216.0f)));
|
||||
v0 = _mm_xor_si128(v0, _mm256_castsi256_si128(out2));
|
||||
__m128i v1 = _mm_shuffle_epi32(v0, _MM_SHUFFLE(0, 1, 2, 3));
|
||||
v0 = _mm_xor_si128(v0, v1);
|
||||
v1 = _mm_shuffle_epi32(v0, _MM_SHUFFLE(0, 1, 0, 1));
|
||||
v0 = _mm_xor_si128(v0, v1);
|
||||
|
||||
// vs is now between 0 and 1
|
||||
sum = _mm_div_ps(sum, _mm_set1_ps(64.0f));
|
||||
sum0 = _mm256_insertf128_ps(_mm256_castps128_ps256(sum), sum, 1);
|
||||
uint32_t n = _mm_cvtsi128_si32(v0);
|
||||
idx0 = scratchpad_ptr<MASK>(lpad, n, 0);
|
||||
idx2 = scratchpad_ptr<MASK>(lpad, n, 2);
|
||||
}
|
||||
}
|
||||
|
||||
template void cn_gpu_inner_avx<xmrig::CnAlgo<xmrig::Algorithm::CN_GPU>().iterations(), xmrig::CnAlgo<xmrig::Algorithm::CN_GPU>().mask()>(const uint8_t* spad, uint8_t* lpad);
|
|
@ -1,212 +0,0 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2020 XMRig <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "crypto/cn/CnAlgo.h"
|
||||
|
||||
|
||||
#ifdef __GNUC__
|
||||
# include <x86intrin.h>
|
||||
#else
|
||||
# include <intrin.h>
|
||||
# define __restrict__ __restrict
|
||||
#endif
|
||||
|
||||
inline void prep_dv(__m128i* idx, __m128i& v, __m128& n)
|
||||
{
|
||||
v = _mm_load_si128(idx);
|
||||
n = _mm_cvtepi32_ps(v);
|
||||
}
|
||||
|
||||
inline __m128 fma_break(__m128 x)
|
||||
{
|
||||
// Break the dependency chain by setitng the exp to ?????01
|
||||
x = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0xFEFFFFFF)), x);
|
||||
return _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x00800000)), x);
|
||||
}
|
||||
|
||||
// 14
|
||||
inline void sub_round(__m128 n0, __m128 n1, __m128 n2, __m128 n3, __m128 rnd_c, __m128& n, __m128& d, __m128& c)
|
||||
{
|
||||
n1 = _mm_add_ps(n1, c);
|
||||
__m128 nn = _mm_mul_ps(n0, c);
|
||||
nn = _mm_mul_ps(n1, _mm_mul_ps(nn,nn));
|
||||
nn = fma_break(nn);
|
||||
n = _mm_add_ps(n, nn);
|
||||
|
||||
n3 = _mm_sub_ps(n3, c);
|
||||
__m128 dd = _mm_mul_ps(n2, c);
|
||||
dd = _mm_mul_ps(n3, _mm_mul_ps(dd,dd));
|
||||
dd = fma_break(dd);
|
||||
d = _mm_add_ps(d, dd);
|
||||
|
||||
//Constant feedback
|
||||
c = _mm_add_ps(c, rnd_c);
|
||||
c = _mm_add_ps(c, _mm_set1_ps(0.734375f));
|
||||
__m128 r = _mm_add_ps(nn, dd);
|
||||
r = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x807FFFFF)), r);
|
||||
r = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), r);
|
||||
c = _mm_add_ps(c, r);
|
||||
}
|
||||
|
||||
// 14*8 + 2 = 112
|
||||
inline void round_compute(__m128 n0, __m128 n1, __m128 n2, __m128 n3, __m128 rnd_c, __m128& c, __m128& r)
|
||||
{
|
||||
__m128 n = _mm_setzero_ps(), d = _mm_setzero_ps();
|
||||
|
||||
sub_round(n0, n1, n2, n3, rnd_c, n, d, c);
|
||||
sub_round(n1, n2, n3, n0, rnd_c, n, d, c);
|
||||
sub_round(n2, n3, n0, n1, rnd_c, n, d, c);
|
||||
sub_round(n3, n0, n1, n2, rnd_c, n, d, c);
|
||||
sub_round(n3, n2, n1, n0, rnd_c, n, d, c);
|
||||
sub_round(n2, n1, n0, n3, rnd_c, n, d, c);
|
||||
sub_round(n1, n0, n3, n2, rnd_c, n, d, c);
|
||||
sub_round(n0, n3, n2, n1, rnd_c, n, d, c);
|
||||
|
||||
// Make sure abs(d) > 2.0 - this prevents division by zero and accidental overflows by division by < 1.0
|
||||
d = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0xFF7FFFFF)), d);
|
||||
d = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), d);
|
||||
r =_mm_add_ps(r, _mm_div_ps(n,d));
|
||||
}
|
||||
|
||||
// 112×4 = 448
|
||||
template<bool add>
|
||||
inline __m128i single_compute(__m128 n0, __m128 n1, __m128 n2, __m128 n3, float cnt, __m128 rnd_c, __m128& sum)
|
||||
{
|
||||
__m128 c = _mm_set1_ps(cnt);
|
||||
__m128 r = _mm_setzero_ps();
|
||||
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
round_compute(n0, n1, n2, n3, rnd_c, c, r);
|
||||
|
||||
// do a quick fmod by setting exp to 2
|
||||
r = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x807FFFFF)), r);
|
||||
r = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), r);
|
||||
|
||||
if(add)
|
||||
sum = _mm_add_ps(sum, r);
|
||||
else
|
||||
sum = r;
|
||||
|
||||
r = _mm_mul_ps(r, _mm_set1_ps(536870880.0f)); // 35
|
||||
return _mm_cvttps_epi32(r);
|
||||
}
|
||||
|
||||
template<size_t rot>
|
||||
inline void single_compute_wrap(__m128 n0, __m128 n1, __m128 n2, __m128 n3, float cnt, __m128 rnd_c, __m128& sum, __m128i& out)
|
||||
{
|
||||
__m128i r = single_compute<rot % 2 != 0>(n0, n1, n2, n3, cnt, rnd_c, sum);
|
||||
if(rot != 0)
|
||||
r = _mm_or_si128(_mm_slli_si128(r, 16 - rot), _mm_srli_si128(r, rot));
|
||||
out = _mm_xor_si128(out, r);
|
||||
}
|
||||
|
||||
template<uint32_t MASK>
|
||||
inline __m128i* scratchpad_ptr(uint8_t* lpad, uint32_t idx, size_t n) { return reinterpret_cast<__m128i*>(lpad + (idx & MASK) + n*16); }
|
||||
|
||||
template<size_t ITER, uint32_t MASK>
|
||||
void cn_gpu_inner_ssse3(const uint8_t* spad, uint8_t* lpad)
|
||||
{
|
||||
uint32_t s = reinterpret_cast<const uint32_t*>(spad)[0] >> 8;
|
||||
__m128i* idx0 = scratchpad_ptr<MASK>(lpad, s, 0);
|
||||
__m128i* idx1 = scratchpad_ptr<MASK>(lpad, s, 1);
|
||||
__m128i* idx2 = scratchpad_ptr<MASK>(lpad, s, 2);
|
||||
__m128i* idx3 = scratchpad_ptr<MASK>(lpad, s, 3);
|
||||
__m128 sum0 = _mm_setzero_ps();
|
||||
|
||||
for(size_t i = 0; i < ITER; i++)
|
||||
{
|
||||
__m128 n0, n1, n2, n3;
|
||||
__m128i v0, v1, v2, v3;
|
||||
__m128 suma, sumb, sum1, sum2, sum3;
|
||||
|
||||
prep_dv(idx0, v0, n0);
|
||||
prep_dv(idx1, v1, n1);
|
||||
prep_dv(idx2, v2, n2);
|
||||
prep_dv(idx3, v3, n3);
|
||||
__m128 rc = sum0;
|
||||
|
||||
__m128i out, out2;
|
||||
out = _mm_setzero_si128();
|
||||
single_compute_wrap<0>(n0, n1, n2, n3, 1.3437500f, rc, suma, out);
|
||||
single_compute_wrap<1>(n0, n2, n3, n1, 1.2812500f, rc, suma, out);
|
||||
single_compute_wrap<2>(n0, n3, n1, n2, 1.3593750f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n0, n3, n2, n1, 1.3671875f, rc, sumb, out);
|
||||
sum0 = _mm_add_ps(suma, sumb);
|
||||
_mm_store_si128(idx0, _mm_xor_si128(v0, out));
|
||||
out2 = out;
|
||||
|
||||
out = _mm_setzero_si128();
|
||||
single_compute_wrap<0>(n1, n0, n2, n3, 1.4296875f, rc, suma, out);
|
||||
single_compute_wrap<1>(n1, n2, n3, n0, 1.3984375f, rc, suma, out);
|
||||
single_compute_wrap<2>(n1, n3, n0, n2, 1.3828125f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n1, n3, n2, n0, 1.3046875f, rc, sumb, out);
|
||||
sum1 = _mm_add_ps(suma, sumb);
|
||||
_mm_store_si128(idx1, _mm_xor_si128(v1, out));
|
||||
out2 = _mm_xor_si128(out2, out);
|
||||
|
||||
out = _mm_setzero_si128();
|
||||
single_compute_wrap<0>(n2, n1, n0, n3, 1.4140625f, rc, suma, out);
|
||||
single_compute_wrap<1>(n2, n0, n3, n1, 1.2734375f, rc, suma, out);
|
||||
single_compute_wrap<2>(n2, n3, n1, n0, 1.2578125f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n2, n3, n0, n1, 1.2890625f, rc, sumb, out);
|
||||
sum2 = _mm_add_ps(suma, sumb);
|
||||
_mm_store_si128(idx2, _mm_xor_si128(v2, out));
|
||||
out2 = _mm_xor_si128(out2, out);
|
||||
|
||||
out = _mm_setzero_si128();
|
||||
single_compute_wrap<0>(n3, n1, n2, n0, 1.3203125f, rc, suma, out);
|
||||
single_compute_wrap<1>(n3, n2, n0, n1, 1.3515625f, rc, suma, out);
|
||||
single_compute_wrap<2>(n3, n0, n1, n2, 1.3359375f, rc, sumb, out);
|
||||
single_compute_wrap<3>(n3, n0, n2, n1, 1.4609375f, rc, sumb, out);
|
||||
sum3 = _mm_add_ps(suma, sumb);
|
||||
_mm_store_si128(idx3, _mm_xor_si128(v3, out));
|
||||
out2 = _mm_xor_si128(out2, out);
|
||||
sum0 = _mm_add_ps(sum0, sum1);
|
||||
sum2 = _mm_add_ps(sum2, sum3);
|
||||
sum0 = _mm_add_ps(sum0, sum2);
|
||||
|
||||
sum0 = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x7fffffff)), sum0); // take abs(va) by masking the float sign bit
|
||||
// vs range 0 - 64
|
||||
n0 = _mm_mul_ps(sum0, _mm_set1_ps(16777216.0f));
|
||||
v0 = _mm_cvttps_epi32(n0);
|
||||
v0 = _mm_xor_si128(v0, out2);
|
||||
v1 = _mm_shuffle_epi32(v0, _MM_SHUFFLE(0, 1, 2, 3));
|
||||
v0 = _mm_xor_si128(v0, v1);
|
||||
v1 = _mm_shuffle_epi32(v0, _MM_SHUFFLE(0, 1, 0, 1));
|
||||
v0 = _mm_xor_si128(v0, v1);
|
||||
|
||||
// vs is now between 0 and 1
|
||||
sum0 = _mm_div_ps(sum0, _mm_set1_ps(64.0f));
|
||||
uint32_t n = _mm_cvtsi128_si32(v0);
|
||||
idx0 = scratchpad_ptr<MASK>(lpad, n, 0);
|
||||
idx1 = scratchpad_ptr<MASK>(lpad, n, 1);
|
||||
idx2 = scratchpad_ptr<MASK>(lpad, n, 2);
|
||||
idx3 = scratchpad_ptr<MASK>(lpad, n, 3);
|
||||
}
|
||||
}
|
||||
|
||||
template void cn_gpu_inner_ssse3<xmrig::CnAlgo<xmrig::Algorithm::CN_GPU>().iterations(), xmrig::CnAlgo<xmrig::Algorithm::CN_GPU>().mask()>(const uint8_t* spad, uint8_t* lpad);
|
153
src/crypto/kawpow/KPCache.cpp
Normal file
153
src/crypto/kawpow/KPCache.cpp
Normal file
|
@ -0,0 +1,153 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
||||
* Copyright 2018-2019 tevador <tevador@gmail.com>
|
||||
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include <cinttypes>
|
||||
|
||||
#include "3rdparty/libethash/ethash.h"
|
||||
#include "3rdparty/libethash/ethash_internal.h"
|
||||
#include "3rdparty/libethash/data_sizes.h"
|
||||
|
||||
#include "base/io/log/Log.h"
|
||||
#include "base/tools/Chrono.h"
|
||||
#include "crypto/common/VirtualMemory.h"
|
||||
#include "crypto/kawpow/KPCache.h"
|
||||
|
||||
|
||||
namespace xmrig {
|
||||
|
||||
|
||||
std::mutex KPCache::s_cacheMutex;
|
||||
KPCache KPCache::s_cache;
|
||||
|
||||
|
||||
KPCache::KPCache()
|
||||
{
|
||||
}
|
||||
|
||||
|
||||
KPCache::~KPCache()
|
||||
{
|
||||
delete m_memory;
|
||||
}
|
||||
|
||||
|
||||
bool KPCache::init(uint32_t epoch)
|
||||
{
|
||||
if (epoch >= sizeof(cache_sizes) / sizeof(cache_sizes[0])) {
|
||||
return false;
|
||||
}
|
||||
|
||||
if (m_epoch == epoch) {
|
||||
return true;
|
||||
}
|
||||
|
||||
const uint64_t start_ms = Chrono::steadyMSecs();
|
||||
|
||||
const size_t size = cache_sizes[epoch];
|
||||
if (!m_memory || m_memory->size() < size) {
|
||||
delete m_memory;
|
||||
m_memory = new VirtualMemory(size, false, false, false);
|
||||
}
|
||||
|
||||
const ethash_h256_t seedhash = ethash_get_seedhash(epoch);
|
||||
ethash_compute_cache_nodes(m_memory->raw(), size, &seedhash);
|
||||
|
||||
ethash_light cache;
|
||||
cache.cache = m_memory->raw();
|
||||
cache.cache_size = size;
|
||||
|
||||
cache.num_parent_nodes = cache.cache_size / sizeof(node);
|
||||
calculate_fast_mod_data(cache.num_parent_nodes, cache.reciprocal, cache.increment, cache.shift);
|
||||
|
||||
for (uint32_t i = 0; i < sizeof(m_l1Cache) / sizeof(node); ++i) {
|
||||
ethash_calculate_dag_item_opt(((node*)m_l1Cache) + i, i, num_dataset_parents, &cache);
|
||||
}
|
||||
|
||||
m_size = size;
|
||||
m_epoch = epoch;
|
||||
|
||||
LOG_INFO("KawPow light cache for epoch %u calculated (%" PRIu64 " ms)", epoch, Chrono::steadyMSecs() - start_ms);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
void* KPCache::data() const
|
||||
{
|
||||
return m_memory ? m_memory->raw() : nullptr;
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t clz(uint32_t a)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
unsigned long index;
|
||||
_BitScanReverse(&index, a);
|
||||
return 31 - index;
|
||||
#else
|
||||
return __builtin_clz(a);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
uint64_t KPCache::dag_size(uint32_t epoch)
|
||||
{
|
||||
if (epoch >= sizeof(dag_sizes) / sizeof(dag_sizes[0])) {
|
||||
return 0;
|
||||
}
|
||||
|
||||
return dag_sizes[epoch];
|
||||
}
|
||||
|
||||
|
||||
void KPCache::calculate_fast_mod_data(uint32_t divisor, uint32_t& reciprocal, uint32_t& increment, uint32_t& shift)
|
||||
{
|
||||
if ((divisor & (divisor - 1)) == 0) {
|
||||
reciprocal = 1;
|
||||
increment = 0;
|
||||
shift = 31U - clz(divisor);
|
||||
}
|
||||
else {
|
||||
shift = 63U - clz(divisor);
|
||||
const uint64_t N = 1ULL << shift;
|
||||
const uint64_t q = N / divisor;
|
||||
const uint64_t r = N - q * divisor;
|
||||
if (r * 2 < divisor)
|
||||
{
|
||||
reciprocal = static_cast<uint32_t>(q);
|
||||
increment = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
reciprocal = static_cast<uint32_t>(q + 1);
|
||||
increment = 0;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
} // namespace xmrig
|
80
src/crypto/kawpow/KPCache.h
Normal file
80
src/crypto/kawpow/KPCache.h
Normal file
|
@ -0,0 +1,80 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
||||
* Copyright 2018-2019 tevador <tevador@gmail.com>
|
||||
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef XMRIG_KP_CACHE_H
|
||||
#define XMRIG_KP_CACHE_H
|
||||
|
||||
|
||||
#include "base/tools/Object.h"
|
||||
#include <mutex>
|
||||
|
||||
|
||||
namespace xmrig
|
||||
{
|
||||
|
||||
|
||||
class VirtualMemory;
|
||||
|
||||
|
||||
class KPCache
|
||||
{
|
||||
public:
|
||||
static constexpr size_t l1_cache_size = 16 * 1024;
|
||||
static constexpr size_t l1_cache_num_items = l1_cache_size / sizeof(uint32_t);
|
||||
static constexpr uint32_t num_dataset_parents = 512;
|
||||
|
||||
XMRIG_DISABLE_COPY_MOVE(KPCache)
|
||||
|
||||
KPCache();
|
||||
~KPCache();
|
||||
|
||||
bool init(uint32_t epoch);
|
||||
|
||||
void* data() const;
|
||||
size_t size() const { return m_size; }
|
||||
uint32_t epoch() const { return m_epoch; }
|
||||
|
||||
const uint32_t* l1_cache() const { return m_l1Cache; }
|
||||
|
||||
static uint64_t dag_size(uint32_t epoch);
|
||||
|
||||
static void calculate_fast_mod_data(uint32_t divisor, uint32_t &reciprocal, uint32_t &increment, uint32_t& shift);
|
||||
|
||||
static std::mutex s_cacheMutex;
|
||||
static KPCache s_cache;
|
||||
|
||||
private:
|
||||
VirtualMemory* m_memory = nullptr;
|
||||
size_t m_size = 0;
|
||||
uint32_t m_epoch = 0xFFFFFFFFUL;
|
||||
uint32_t m_l1Cache[l1_cache_num_items] = {};
|
||||
};
|
||||
|
||||
|
||||
} /* namespace xmrig */
|
||||
|
||||
|
||||
#endif /* XMRIG_KP_CACHE_H */
|
353
src/crypto/kawpow/KPHash.cpp
Normal file
353
src/crypto/kawpow/KPHash.cpp
Normal file
|
@ -0,0 +1,353 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
||||
* Copyright 2018-2019 tevador <tevador@gmail.com>
|
||||
* Copyright 2018-2019 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
|
||||
#include "crypto/kawpow/KPHash.h"
|
||||
#include "crypto/kawpow/KPCache.h"
|
||||
#include "3rdparty/libethash/ethash.h"
|
||||
#include "3rdparty/libethash/ethash_internal.h"
|
||||
#include "3rdparty/libethash/data_sizes.h"
|
||||
|
||||
#ifdef _MSC_VER
|
||||
#include <intrin.h>
|
||||
#endif
|
||||
|
||||
namespace xmrig {
|
||||
|
||||
|
||||
static const uint32_t ravencoin_kawpow[15] = {
|
||||
0x00000072, //R
|
||||
0x00000041, //A
|
||||
0x00000056, //V
|
||||
0x00000045, //E
|
||||
0x0000004E, //N
|
||||
0x00000043, //C
|
||||
0x0000004F, //O
|
||||
0x00000049, //I
|
||||
0x0000004E, //N
|
||||
0x0000004B, //K
|
||||
0x00000041, //A
|
||||
0x00000057, //W
|
||||
0x00000050, //P
|
||||
0x0000004F, //O
|
||||
0x00000057, //W
|
||||
};
|
||||
|
||||
|
||||
static const uint32_t fnv_prime = 0x01000193;
|
||||
static const uint32_t fnv_offset_basis = 0x811c9dc5;
|
||||
|
||||
|
||||
static inline uint32_t fnv1a(uint32_t u, uint32_t v)
|
||||
{
|
||||
return (u ^ v) * fnv_prime;
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t kiss99(uint32_t& z, uint32_t& w, uint32_t& jsr, uint32_t& jcong)
|
||||
{
|
||||
z = 36969 * (z & 0xffff) + (z >> 16);
|
||||
w = 18000 * (w & 0xffff) + (w >> 16);
|
||||
|
||||
jcong = 69069 * jcong + 1234567;
|
||||
|
||||
jsr ^= (jsr << 17);
|
||||
jsr ^= (jsr >> 13);
|
||||
jsr ^= (jsr << 5);
|
||||
|
||||
return (((z << 16) + w) ^ jcong) + jsr;
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t rotl(uint32_t n, uint32_t c)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return _rotl(n, c);
|
||||
#else
|
||||
c &= 31;
|
||||
uint32_t neg_c = (uint32_t)(-(int32_t)c);
|
||||
return (n << c) | (n >> (neg_c & 31));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t rotr(uint32_t n, uint32_t c)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return _rotr(n, c);
|
||||
#else
|
||||
c &= 31;
|
||||
uint32_t neg_c = (uint32_t)(-(int32_t)c);
|
||||
return (n >> c) | (n << (neg_c & 31));
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static inline void random_merge(uint32_t& a, uint32_t b, uint32_t selector)
|
||||
{
|
||||
const uint32_t x = (selector >> 16) % 31 + 1;
|
||||
switch (selector % 4)
|
||||
{
|
||||
case 0:
|
||||
a = (a * 33) + b;
|
||||
break;
|
||||
case 1:
|
||||
a = (a ^ b) * 33;
|
||||
break;
|
||||
case 2:
|
||||
a = rotl(a, x) ^ b;
|
||||
break;
|
||||
case 3:
|
||||
a = rotr(a, x) ^ b;
|
||||
break;
|
||||
default:
|
||||
#ifdef _MSC_VER
|
||||
__assume(false);
|
||||
#else
|
||||
__builtin_unreachable();
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t clz(uint32_t a)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
unsigned long index;
|
||||
_BitScanReverse(&index, a);
|
||||
return a ? (31 - index) : 32;
|
||||
#else
|
||||
return a ? (uint32_t)__builtin_clz(a) : 32;
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t popcount(uint32_t a)
|
||||
{
|
||||
#ifdef _MSC_VER
|
||||
return __popcnt(a);
|
||||
#else
|
||||
return __builtin_popcount(a);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
static inline uint32_t random_math(uint32_t a, uint32_t b, uint32_t selector)
|
||||
{
|
||||
switch (selector % 11)
|
||||
{
|
||||
case 0:
|
||||
return a + b;
|
||||
case 1:
|
||||
return a * b;
|
||||
case 2:
|
||||
return (uint64_t(a) * b) >> 32;
|
||||
case 3:
|
||||
return (a < b) ? a : b;
|
||||
case 4:
|
||||
return rotl(a, b);
|
||||
case 5:
|
||||
return rotr(a, b);
|
||||
case 6:
|
||||
return a & b;
|
||||
case 7:
|
||||
return a | b;
|
||||
case 8:
|
||||
return a ^ b;
|
||||
case 9:
|
||||
return clz(a) + clz(b);
|
||||
case 10:
|
||||
return popcount(a) + popcount(b);
|
||||
default:
|
||||
#ifdef _MSC_VER
|
||||
__assume(false);
|
||||
#else
|
||||
__builtin_unreachable();
|
||||
#endif
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void KPHash::calculate(const KPCache& light_cache, uint32_t block_height, const uint8_t (&header_hash)[32], uint64_t nonce, uint32_t (&output)[8], uint32_t (&mix_hash)[8])
|
||||
{
|
||||
uint32_t keccak_state[25];
|
||||
uint32_t mix[LANES][REGS];
|
||||
|
||||
memcpy(keccak_state, header_hash, sizeof(header_hash));
|
||||
memcpy(keccak_state + 8, &nonce, sizeof(nonce));
|
||||
memcpy(keccak_state + 10, ravencoin_kawpow, sizeof(ravencoin_kawpow));
|
||||
|
||||
ethash_keccakf800(keccak_state);
|
||||
|
||||
uint32_t z = fnv1a(fnv_offset_basis, keccak_state[0]);
|
||||
uint32_t w = fnv1a(z, keccak_state[1]);
|
||||
uint32_t jsr, jcong;
|
||||
|
||||
for (uint32_t l = 0; l < LANES; ++l) {
|
||||
uint32_t z1 = z;
|
||||
uint32_t w1 = w;
|
||||
jsr = fnv1a(w, l);
|
||||
jcong = fnv1a(jsr, l);
|
||||
|
||||
for (uint32_t r = 0; r < REGS; ++r) {
|
||||
mix[l][r] = kiss99(z1, w1, jsr, jcong);
|
||||
}
|
||||
}
|
||||
|
||||
const uint32_t prog_number = block_height / PERIOD_LENGTH;
|
||||
|
||||
uint32_t dst_seq[REGS];
|
||||
uint32_t src_seq[REGS];
|
||||
|
||||
z = fnv1a(fnv_offset_basis, prog_number);
|
||||
w = fnv1a(z, 0);
|
||||
jsr = fnv1a(w, prog_number);
|
||||
jcong = fnv1a(jsr, 0);
|
||||
|
||||
for (uint32_t i = 0; i < REGS; ++i)
|
||||
{
|
||||
dst_seq[i] = i;
|
||||
src_seq[i] = i;
|
||||
}
|
||||
|
||||
for (uint32_t i = REGS; i > 1; --i)
|
||||
{
|
||||
std::swap(dst_seq[i - 1], dst_seq[kiss99(z, w, jsr, jcong) % i]);
|
||||
std::swap(src_seq[i - 1], src_seq[kiss99(z, w, jsr, jcong) % i]);
|
||||
}
|
||||
|
||||
const uint32_t epoch = light_cache.epoch();
|
||||
const uint32_t num_items = static_cast<uint32_t>(dag_sizes[epoch] / ETHASH_MIX_BYTES / 2);
|
||||
|
||||
constexpr size_t num_words_per_lane = 256 / (sizeof(uint32_t) * LANES);
|
||||
constexpr int max_operations = (CNT_CACHE > CNT_MATH) ? CNT_CACHE : CNT_MATH;
|
||||
|
||||
ethash_light cache;
|
||||
cache.cache = light_cache.data();
|
||||
cache.cache_size = light_cache.size();
|
||||
cache.block_number = block_height;
|
||||
|
||||
cache.num_parent_nodes = cache.cache_size / sizeof(node);
|
||||
KPCache::calculate_fast_mod_data(cache.num_parent_nodes, cache.reciprocal, cache.increment, cache.shift);
|
||||
|
||||
uint32_t z0 = z;
|
||||
uint32_t w0 = w;
|
||||
uint32_t jsr0 = jsr;
|
||||
uint32_t jcong0 = jcong;
|
||||
|
||||
for (uint32_t r = 0; r < ETHASH_ACCESSES; ++r) {
|
||||
uint32_t item_index = (mix[r % LANES][0] % num_items) * 4;
|
||||
|
||||
node item[4];
|
||||
ethash_calculate_dag_item_opt(item + 0, item_index + 0, KPCache::num_dataset_parents, &cache);
|
||||
ethash_calculate_dag_item_opt(item + 1, item_index + 1, KPCache::num_dataset_parents, &cache);
|
||||
ethash_calculate_dag_item_opt(item + 2, item_index + 2, KPCache::num_dataset_parents, &cache);
|
||||
ethash_calculate_dag_item_opt(item + 3, item_index + 3, KPCache::num_dataset_parents, &cache);
|
||||
|
||||
uint32_t dst_counter = 0;
|
||||
uint32_t src_counter = 0;
|
||||
|
||||
z = z0;
|
||||
w = w0;
|
||||
jsr = jsr0;
|
||||
jcong = jcong0;
|
||||
|
||||
for (uint32_t i = 0; i < max_operations; ++i) {
|
||||
if (i < CNT_CACHE) {
|
||||
const uint32_t src = src_seq[(src_counter++) % REGS];
|
||||
const uint32_t dst = dst_seq[(dst_counter++) % REGS];
|
||||
const uint32_t sel = kiss99(z, w, jsr, jcong);
|
||||
for (uint32_t j = 0; j < LANES; ++j) {
|
||||
random_merge(mix[j][dst], light_cache.l1_cache()[mix[j][src] % KPCache::l1_cache_num_items], sel);
|
||||
}
|
||||
}
|
||||
|
||||
if (i < CNT_MATH)
|
||||
{
|
||||
const uint32_t src_rnd = kiss99(z, w, jsr, jcong) % (REGS * (REGS - 1));
|
||||
const uint32_t src1 = src_rnd % REGS;
|
||||
uint32_t src2 = src_rnd / REGS;
|
||||
if (src2 >= src1) {
|
||||
++src2;
|
||||
}
|
||||
|
||||
const uint32_t sel1 = kiss99(z, w, jsr, jcong);
|
||||
const uint32_t dst = dst_seq[(dst_counter++) % REGS];
|
||||
const uint32_t sel2 = kiss99(z, w, jsr, jcong);
|
||||
|
||||
for (size_t l = 0; l < LANES; ++l)
|
||||
{
|
||||
const uint32_t data = random_math(mix[l][src1], mix[l][src2], sel1);
|
||||
random_merge(mix[l][dst], data, sel2);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t dsts[num_words_per_lane];
|
||||
uint32_t sels[num_words_per_lane];
|
||||
for (uint32_t i = 0; i < num_words_per_lane; ++i) {
|
||||
dsts[i] = (i == 0) ? 0 : dst_seq[(dst_counter++) % REGS];
|
||||
sels[i] = kiss99(z, w, jsr, jcong);
|
||||
}
|
||||
|
||||
for (uint32_t l = 0; l < LANES; ++l) {
|
||||
const uint32_t offset = ((l ^ r) % LANES) * num_words_per_lane;
|
||||
for (size_t i = 0; i < num_words_per_lane; ++i) {
|
||||
random_merge(mix[l][dsts[i]], ((uint32_t*)item)[offset + i], sels[i]);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
uint32_t lane_hash[LANES];
|
||||
for (uint32_t l = 0; l < LANES; ++l)
|
||||
{
|
||||
lane_hash[l] = fnv_offset_basis;
|
||||
for (uint32_t i = 0; i < REGS; ++i) {
|
||||
lane_hash[l] = fnv1a(lane_hash[l], mix[l][i]);
|
||||
}
|
||||
}
|
||||
|
||||
constexpr uint32_t num_words = 8;
|
||||
|
||||
for (uint32_t i = 0; i < num_words; ++i) {
|
||||
mix_hash[i] = fnv_offset_basis;
|
||||
}
|
||||
|
||||
for (uint32_t l = 0; l < LANES; ++l)
|
||||
mix_hash[l % num_words] = fnv1a(mix_hash[l % num_words], lane_hash[l]);
|
||||
|
||||
memcpy(keccak_state + 8, mix_hash, sizeof(mix_hash));
|
||||
memcpy(keccak_state + 16, ravencoin_kawpow, sizeof(uint32_t) * 9);
|
||||
|
||||
ethash_keccakf800(keccak_state);
|
||||
|
||||
memcpy(output, keccak_state, sizeof(output));
|
||||
}
|
||||
|
||||
|
||||
} // namespace xmrig
|
58
src/crypto/kawpow/KPHash.h
Normal file
58
src/crypto/kawpow/KPHash.h
Normal file
|
@ -0,0 +1,58 @@
|
|||
/* XMRig
|
||||
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
|
||||
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
|
||||
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
|
||||
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
|
||||
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
|
||||
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
|
||||
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
|
||||
* Copyright 2018-2019 tevador <tevador@gmail.com>
|
||||
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
|
||||
* Copyright 2016-2019 XMRig <https://github.com/xmrig>, <support@xmrig.com>
|
||||
*
|
||||
* This program is free software: you can redistribute it and/or modify
|
||||
* it under the terms of the GNU General Public License as published by
|
||||
* the Free Software Foundation, either version 3 of the License, or
|
||||
* (at your option) any later version.
|
||||
*
|
||||
* This program is distributed in the hope that it will be useful,
|
||||
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
||||
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
||||
* GNU General Public License for more details.
|
||||
*
|
||||
* You should have received a copy of the GNU General Public License
|
||||
* along with this program. If not, see <http://www.gnu.org/licenses/>.
|
||||
*/
|
||||
|
||||
#ifndef XMRIG_KP_HASH_H
|
||||
#define XMRIG_KP_HASH_H
|
||||
|
||||
|
||||
#include <stdint.h>
|
||||
|
||||
|
||||
namespace xmrig
|
||||
{
|
||||
|
||||
|
||||
class KPCache;
|
||||
|
||||
|
||||
class KPHash
|
||||
{
|
||||
public:
|
||||
static constexpr uint32_t EPOCH_LENGTH = 7500;
|
||||
static constexpr uint32_t PERIOD_LENGTH = 3;
|
||||
static constexpr int CNT_CACHE = 11;
|
||||
static constexpr int CNT_MATH = 18;
|
||||
static constexpr uint32_t REGS = 32;
|
||||
static constexpr uint32_t LANES = 16;
|
||||
|
||||
static void calculate(const KPCache& light_cache, uint32_t block_height, const uint8_t (&header_hash)[32], uint64_t nonce, uint32_t (&output)[8], uint32_t (&mix_hash)[8]);
|
||||
};
|
||||
|
||||
|
||||
} /* namespace xmrig */
|
||||
|
||||
|
||||
#endif /* XMRIG_KP_HASH_H */
|
Loading…
Add table
Add a link
Reference in a new issue