REDACTED-rig/src/backend/cuda/runners/CudaRxRunner.cpp

75 lines
2.7 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2018 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018-2024 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2024 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "backend/cuda/runners/CudaRxRunner.h"
#include "backend/cuda/CudaLaunchData.h"
#include "backend/cuda/wrappers/CudaLib.h"
#include "base/net/stratum/Job.h"
#include "crypto/rx/Rx.h"
#include "crypto/rx/RxDataset.h"
xmrig::CudaRxRunner::CudaRxRunner(size_t index, const CudaLaunchData &data) :
CudaBaseRunner(index, data),
m_datasetHost(data.thread.datasetHost() > 0)
{
m_intensity = m_data.thread.threads() * m_data.thread.blocks();
const size_t scratchpads_size = m_intensity * m_data.algorithm.l3();
const size_t num_scratchpads = scratchpads_size / m_data.algorithm.l3();
if (m_intensity > num_scratchpads) {
m_intensity = num_scratchpads;
}
m_intensity -= m_intensity % 32;
}
bool xmrig::CudaRxRunner::run(uint32_t startNonce, uint32_t *rescount, uint32_t *resnonce)
{
return callWrapper(CudaLib::rxHash(m_ctx, startNonce, m_target, rescount, resnonce));
}
bool xmrig::CudaRxRunner::set(const Job &job, uint8_t *blob)
{
if (!m_datasetHost && (m_seed != job.seed())) {
m_seed = job.seed();
if (m_ready) {
const auto *dataset = Rx::dataset(job, 0);
callWrapper(CudaLib::rxUpdateDataset(m_ctx, dataset->raw(), dataset->size(false)));
}
}
const bool rc = CudaBaseRunner::set(job, blob);
if (!rc || m_ready) {
return rc;
}
const auto *dataset = Rx::dataset(job, 0);
m_ready = callWrapper(CudaLib::rxPrepare(m_ctx, dataset->raw(), dataset->size(false), m_datasetHost, m_intensity));
return m_ready;
}