REDACTED-rig/src/base/tools/cryptonote/Signatures.cpp
2022-04-17 06:03:39 +07:00

236 lines
6.2 KiB
C++

/* XMRig
* Copyright (c) 2012-2013 The Cryptonote developers
* Copyright (c) 2014-2021 The Monero Project
* Copyright (c) 2018-2022 SChernykh <https://github.com/SChernykh>
* Copyright (c) 2016-2022 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "base/crypto/keccak.h"
#include "base/tools/cryptonote/Signatures.h"
#include "base/tools/Cvt.h"
extern "C" {
#ifdef XMRIG_LEGACY
# include "base/tools/cryptonote/crypto-ops.h"
#else
# include "3rdparty/cryptonote/crypto-ops.h"
#endif
}
#if defined(XMRIG_PROXY_PROJECT) || !defined(XMRIG_PROFILER_H)
# define PROFILE_SCOPE(x)
#else
# include "crypto/rx/Profiler.h"
#endif
namespace xmrig {
struct ec_scalar { uint8_t data[32]; };
struct hash { uint8_t data[32]; };
struct ec_point { uint8_t data[32]; };
struct signature { ec_scalar c, r; };
struct s_comm { hash h; ec_point key; ec_point comm; };
static inline void random_scalar(ec_scalar &res)
{
// Don't care about bias or possible 0 after reduce: probability ~10^-76, not happening in this universe.
// Performance matters more. It's a miner after all.
Cvt::randomBytes(res.data, sizeof(res.data));
sc_reduce32(res.data);
}
static void hash_to_scalar(const void* data, size_t length, ec_scalar &res)
{
keccak(reinterpret_cast<const uint8_t*>(data), length, res.data, sizeof(res));
sc_reduce32(res.data);
}
static void derivation_to_scalar(const uint8_t *derivation, size_t output_index, ec_scalar &res)
{
struct {
uint8_t derivation[32];
uint8_t output_index[(sizeof(size_t) * 8 + 6) / 7];
} buf;
uint8_t* end = buf.output_index;
memcpy(buf.derivation, derivation, sizeof(buf.derivation));
size_t k = output_index;
while (k >= 0x80) {
*(end++) = (static_cast<uint8_t>(k) & 0x7F) | 0x80;
k >>= 7;
}
*(end++) = static_cast<uint8_t>(k);
hash_to_scalar(&buf, end - reinterpret_cast<uint8_t*>(&buf), res);
}
} // namespace xmrig
// NOLINTNEXTLINE(readability-non-const-parameter)
void xmrig::generate_signature(const uint8_t *prefix_hash, const uint8_t *pub, const uint8_t *sec, uint8_t *sig_bytes)
{
PROFILE_SCOPE(GenerateSignature);
ge_p3 tmp3;
ec_scalar k;
s_comm buf;
memcpy(buf.h.data, prefix_hash, sizeof(buf.h.data));
memcpy(buf.key.data, pub, sizeof(buf.key.data));
signature &sig = *reinterpret_cast<signature*>(sig_bytes);
do {
random_scalar(k);
ge_scalarmult_base(&tmp3, k.data);
ge_p3_tobytes(buf.comm.data, &tmp3);
hash_to_scalar(&buf, sizeof(s_comm), sig.c);
if (!sc_isnonzero(sig.c.data)) {
continue;
}
sc_mulsub(sig.r.data, sig.c.data, sec, k.data);
} while (!sc_isnonzero(sig.r.data));
}
bool xmrig::check_signature(const uint8_t *prefix_hash, const uint8_t *pub, const uint8_t *sig_bytes)
{
ge_p2 tmp2;
ge_p3 tmp3;
ec_scalar c;
s_comm buf;
memcpy(buf.h.data, prefix_hash, sizeof(buf.h.data));
memcpy(buf.key.data, pub, sizeof(buf.key.data));
if (ge_frombytes_vartime(&tmp3, pub) != 0) {
return false;
}
const signature &sig = *reinterpret_cast<const signature *>(sig_bytes);
if (sc_check(sig.c.data) != 0 || sc_check(sig.r.data) != 0 || !sc_isnonzero(sig.c.data)) {
return false;
}
ge_double_scalarmult_base_vartime(&tmp2, sig.c.data, &tmp3, sig.r.data);
ge_tobytes(buf.comm.data, &tmp2);
static const ec_point infinity = { { 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0} };
if (memcmp(&buf.comm, &infinity, 32) == 0) {
return false;
}
hash_to_scalar(&buf, sizeof(s_comm), c);
sc_sub(c.data, c.data, sig.c.data);
return sc_isnonzero(c.data) == 0;
}
bool xmrig::generate_key_derivation(const uint8_t *key1, const uint8_t *key2, uint8_t *derivation)
{
ge_p3 point;
ge_p2 point2;
ge_p1p1 point3;
if (ge_frombytes_vartime(&point, key1) != 0) {
return false;
}
ge_scalarmult(&point2, key2, &point);
ge_mul8(&point3, &point2);
ge_p1p1_to_p2(&point2, &point3);
ge_tobytes(derivation, &point2);
return true;
}
void xmrig::derive_secret_key(const uint8_t *derivation, size_t output_index, const uint8_t *base, uint8_t *derived_key)
{
ec_scalar scalar;
derivation_to_scalar(derivation, output_index, scalar);
sc_add(derived_key, base, scalar.data);
}
bool xmrig::derive_public_key(const uint8_t *derivation, size_t output_index, const uint8_t *base, uint8_t *derived_key)
{
ec_scalar scalar;
ge_p3 point1;
ge_p3 point2;
ge_cached point3;
ge_p1p1 point4;
ge_p2 point5;
if (ge_frombytes_vartime(&point1, base) != 0) {
return false;
}
derivation_to_scalar(derivation, output_index, scalar);
ge_scalarmult_base(&point2, scalar.data);
ge_p3_to_cached(&point3, &point2);
ge_add(&point4, &point1, &point3);
ge_p1p1_to_p2(&point5, &point4);
ge_tobytes(derived_key, &point5);
return true;
}
void xmrig::derive_view_secret_key(const uint8_t *spend_secret_key, uint8_t *view_secret_key)
{
keccak(spend_secret_key, 32, view_secret_key, 32);
sc_reduce32(view_secret_key);
}
void xmrig::generate_keys(uint8_t *pub, uint8_t *sec)
{
random_scalar(*((ec_scalar*)sec));
ge_p3 point;
ge_scalarmult_base(&point, sec);
ge_p3_tobytes(pub, &point);
}
bool xmrig::secret_key_to_public_key(const uint8_t *sec, uint8_t *pub)
{
if (sc_check(sec) != 0) {
return false;
}
ge_p3 point;
ge_scalarmult_base(&point, sec);
ge_p3_tobytes(pub, &point);
return true;
}