REDACTED-rig/src/crypto/cn/CryptoNight_x86.h

2054 lines
79 KiB
C++

/* XMRig
* Copyright 2010 Jeff Garzik <jgarzik@pobox.com>
* Copyright 2012-2014 pooler <pooler@litecoinpool.org>
* Copyright 2014 Lucas Jones <https://github.com/lucasjones>
* Copyright 2014-2016 Wolf9466 <https://github.com/OhGodAPet>
* Copyright 2016 Jay D Dee <jayddee246@gmail.com>
* Copyright 2017-2019 XMR-Stak <https://github.com/fireice-uk>, <https://github.com/psychocrypt>
* Copyright 2018 Lee Clagett <https://github.com/vtnerd>
* Copyright 2018-2020 SChernykh <https://github.com/SChernykh>
* Copyright 2016-2020 XMRig <https://github.com/xmrig>, <support@xmrig.com>
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#ifndef XMRIG_CRYPTONIGHT_X86_H
#define XMRIG_CRYPTONIGHT_X86_H
#ifdef __GNUC__
# include <x86intrin.h>
#else
# include <intrin.h>
# define __restrict__ __restrict
#endif
#include "backend/cpu/Cpu.h"
#include "base/crypto/keccak.h"
#include "crypto/cn/CnAlgo.h"
#include "crypto/cn/CryptoNight_monero.h"
#include "crypto/cn/CryptoNight.h"
#include "crypto/cn/soft_aes.h"
#ifdef XMRIG_VAES
# include "crypto/cn/CryptoNight_x86_vaes.h"
#endif
extern "C"
{
#include "crypto/cn/c_groestl.h"
#include "crypto/cn/c_blake256.h"
#include "crypto/cn/c_jh.h"
#include "crypto/cn/c_skein.h"
}
static inline void do_blake_hash(const uint8_t *input, size_t len, uint8_t *output) {
blake256_hash(output, input, len);
}
static inline void do_groestl_hash(const uint8_t *input, size_t len, uint8_t *output) {
groestl(input, len * 8, output);
}
static inline void do_jh_hash(const uint8_t *input, size_t len, uint8_t *output) {
jh_hash(32 * 8, input, 8 * len, output);
}
static inline void do_skein_hash(const uint8_t *input, size_t len, uint8_t *output) {
xmr_skein(input, output);
}
void (* const extra_hashes[4])(const uint8_t *, size_t, uint8_t *) = {do_blake_hash, do_groestl_hash, do_jh_hash, do_skein_hash};
#if (defined(__i386__) || defined(_M_IX86)) && !(defined(__clang__) && defined(__clang_major__) && (__clang_major__ >= 15))
static inline int64_t _mm_cvtsi128_si64(__m128i a)
{
return ((uint64_t)(uint32_t)_mm_cvtsi128_si32(a) | ((uint64_t)(uint32_t)_mm_cvtsi128_si32(_mm_srli_si128(a, 4)) << 32));
}
static inline __m128i _mm_cvtsi64_si128(int64_t a) {
return _mm_set_epi64x(0, a);
}
#endif
// This will shift and xor tmp1 into itself as 4 32-bit vals such as
// sl_xor(a1 a2 a3 a4) = a1 (a2^a1) (a3^a2^a1) (a4^a3^a2^a1)
static inline __m128i sl_xor(__m128i tmp1)
{
__m128i tmp4;
tmp4 = _mm_slli_si128(tmp1, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
tmp4 = _mm_slli_si128(tmp4, 0x04);
tmp1 = _mm_xor_si128(tmp1, tmp4);
return tmp1;
}
template<uint8_t rcon>
static inline void aes_genkey_sub(__m128i* xout0, __m128i* xout2)
{
__m128i xout1 = _mm_aeskeygenassist_si128(*xout2, rcon);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
*xout0 = sl_xor(*xout0);
*xout0 = _mm_xor_si128(*xout0, xout1);
xout1 = _mm_aeskeygenassist_si128(*xout0, 0x00);
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
*xout2 = sl_xor(*xout2);
*xout2 = _mm_xor_si128(*xout2, xout1);
}
template<uint8_t rcon>
static inline void soft_aes_genkey_sub(__m128i* xout0, __m128i* xout2)
{
__m128i xout1 = soft_aeskeygenassist<rcon>(*xout2);
xout1 = _mm_shuffle_epi32(xout1, 0xFF); // see PSHUFD, set all elems to 4th elem
*xout0 = sl_xor(*xout0);
*xout0 = _mm_xor_si128(*xout0, xout1);
xout1 = soft_aeskeygenassist<0x00>(*xout0);
xout1 = _mm_shuffle_epi32(xout1, 0xAA); // see PSHUFD, set all elems to 3rd elem
*xout2 = sl_xor(*xout2);
*xout2 = _mm_xor_si128(*xout2, xout1);
}
template<bool SOFT_AES>
static inline void aes_genkey(const __m128i* memory, __m128i* k0, __m128i* k1, __m128i* k2, __m128i* k3, __m128i* k4, __m128i* k5, __m128i* k6, __m128i* k7, __m128i* k8, __m128i* k9)
{
__m128i xout0 = _mm_load_si128(memory);
__m128i xout2 = _mm_load_si128(memory + 1);
*k0 = xout0;
*k1 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x01>(&xout0, &xout2) : aes_genkey_sub<0x01>(&xout0, &xout2);
*k2 = xout0;
*k3 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x02>(&xout0, &xout2) : aes_genkey_sub<0x02>(&xout0, &xout2);
*k4 = xout0;
*k5 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x04>(&xout0, &xout2) : aes_genkey_sub<0x04>(&xout0, &xout2);
*k6 = xout0;
*k7 = xout2;
SOFT_AES ? soft_aes_genkey_sub<0x08>(&xout0, &xout2) : aes_genkey_sub<0x08>(&xout0, &xout2);
*k8 = xout0;
*k9 = xout2;
}
static FORCEINLINE void soft_aesenc(void* __restrict ptr, const void* __restrict key, const uint32_t* __restrict t)
{
uint32_t x0 = ((const uint32_t*)(ptr))[0];
uint32_t x1 = ((const uint32_t*)(ptr))[1];
uint32_t x2 = ((const uint32_t*)(ptr))[2];
uint32_t x3 = ((const uint32_t*)(ptr))[3];
uint32_t y0 = t[x0 & 0xff]; x0 >>= 8;
uint32_t y1 = t[x1 & 0xff]; x1 >>= 8;
uint32_t y2 = t[x2 & 0xff]; x2 >>= 8;
uint32_t y3 = t[x3 & 0xff]; x3 >>= 8;
t += 256;
y0 ^= t[x1 & 0xff]; x1 >>= 8;
y1 ^= t[x2 & 0xff]; x2 >>= 8;
y2 ^= t[x3 & 0xff]; x3 >>= 8;
y3 ^= t[x0 & 0xff]; x0 >>= 8;
t += 256;
y0 ^= t[x2 & 0xff]; x2 >>= 8;
y1 ^= t[x3 & 0xff]; x3 >>= 8;
y2 ^= t[x0 & 0xff]; x0 >>= 8;
y3 ^= t[x1 & 0xff]; x1 >>= 8;
t += 256;
y0 ^= t[x3];
y1 ^= t[x0];
y2 ^= t[x1];
y3 ^= t[x2];
((uint32_t*)ptr)[0] = y0 ^ ((uint32_t*)key)[0];
((uint32_t*)ptr)[1] = y1 ^ ((uint32_t*)key)[1];
((uint32_t*)ptr)[2] = y2 ^ ((uint32_t*)key)[2];
((uint32_t*)ptr)[3] = y3 ^ ((uint32_t*)key)[3];
}
static FORCEINLINE __m128i soft_aesenc(const void* __restrict ptr, const __m128i key, const uint32_t* __restrict t)
{
uint32_t x0 = ((const uint32_t*)(ptr))[0];
uint32_t x1 = ((const uint32_t*)(ptr))[1];
uint32_t x2 = ((const uint32_t*)(ptr))[2];
uint32_t x3 = ((const uint32_t*)(ptr))[3];
uint32_t y0 = t[x0 & 0xff]; x0 >>= 8;
uint32_t y1 = t[x1 & 0xff]; x1 >>= 8;
uint32_t y2 = t[x2 & 0xff]; x2 >>= 8;
uint32_t y3 = t[x3 & 0xff]; x3 >>= 8;
t += 256;
y0 ^= t[x1 & 0xff]; x1 >>= 8;
y1 ^= t[x2 & 0xff]; x2 >>= 8;
y2 ^= t[x3 & 0xff]; x3 >>= 8;
y3 ^= t[x0 & 0xff]; x0 >>= 8;
t += 256;
y0 ^= t[x2 & 0xff]; x2 >>= 8;
y1 ^= t[x3 & 0xff]; x3 >>= 8;
y2 ^= t[x0 & 0xff]; x0 >>= 8;
y3 ^= t[x1 & 0xff]; x1 >>= 8;
y0 ^= t[x3 + 256];
y1 ^= t[x0 + 256];
y2 ^= t[x1 + 256];
y3 ^= t[x2 + 256];
return _mm_xor_si128(_mm_set_epi32(y3, y2, y1, y0), key);
}
template<bool SOFT_AES>
void aes_round(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7);
template<>
NOINLINE void aes_round<true>(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = soft_aesenc((uint32_t*)x0, key, (const uint32_t*)saes_table);
*x1 = soft_aesenc((uint32_t*)x1, key, (const uint32_t*)saes_table);
*x2 = soft_aesenc((uint32_t*)x2, key, (const uint32_t*)saes_table);
*x3 = soft_aesenc((uint32_t*)x3, key, (const uint32_t*)saes_table);
*x4 = soft_aesenc((uint32_t*)x4, key, (const uint32_t*)saes_table);
*x5 = soft_aesenc((uint32_t*)x5, key, (const uint32_t*)saes_table);
*x6 = soft_aesenc((uint32_t*)x6, key, (const uint32_t*)saes_table);
*x7 = soft_aesenc((uint32_t*)x7, key, (const uint32_t*)saes_table);
}
template<>
FORCEINLINE void aes_round<false>(__m128i key, __m128i* x0, __m128i* x1, __m128i* x2, __m128i* x3, __m128i* x4, __m128i* x5, __m128i* x6, __m128i* x7)
{
*x0 = _mm_aesenc_si128(*x0, key);
*x1 = _mm_aesenc_si128(*x1, key);
*x2 = _mm_aesenc_si128(*x2, key);
*x3 = _mm_aesenc_si128(*x3, key);
*x4 = _mm_aesenc_si128(*x4, key);
*x5 = _mm_aesenc_si128(*x5, key);
*x6 = _mm_aesenc_si128(*x6, key);
*x7 = _mm_aesenc_si128(*x7, key);
}
inline void mix_and_propagate(__m128i& x0, __m128i& x1, __m128i& x2, __m128i& x3, __m128i& x4, __m128i& x5, __m128i& x6, __m128i& x7)
{
__m128i tmp0 = x0;
x0 = _mm_xor_si128(x0, x1);
x1 = _mm_xor_si128(x1, x2);
x2 = _mm_xor_si128(x2, x3);
x3 = _mm_xor_si128(x3, x4);
x4 = _mm_xor_si128(x4, x5);
x5 = _mm_xor_si128(x5, x6);
x6 = _mm_xor_si128(x6, x7);
x7 = _mm_xor_si128(x7, tmp0);
}
namespace xmrig {
template<int interleave>
static inline constexpr uint64_t interleaved_index(uint64_t k)
{
return ((k & ~63ULL) << interleave) | (k & 63);
}
template<>
inline constexpr uint64_t interleaved_index<0>(uint64_t k)
{
return k;
}
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
static NOINLINE void cn_explode_scratchpad(cryptonight_ctx *ctx)
{
constexpr CnAlgo<ALGO> props;
# ifdef XMRIG_VAES
if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) {
cn_explode_scratchpad_vaes(ctx, props.memory(), props.half_mem());
return;
}
# endif
constexpr size_t N = (props.memory() / sizeof(__m128i)) / (props.half_mem() ? 2 : 1);
__m128i xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
const __m128i* input = reinterpret_cast<const __m128i*>(ctx->state);
__m128i* output = reinterpret_cast<__m128i*>(ctx->memory);
aes_genkey<SOFT_AES>(input, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
if (props.half_mem() && !ctx->first_half) {
const __m128i* p = reinterpret_cast<const __m128i*>(ctx->save_state);
xin0 = _mm_load_si128(p + 0);
xin1 = _mm_load_si128(p + 1);
xin2 = _mm_load_si128(p + 2);
xin3 = _mm_load_si128(p + 3);
xin4 = _mm_load_si128(p + 4);
xin5 = _mm_load_si128(p + 5);
xin6 = _mm_load_si128(p + 6);
xin7 = _mm_load_si128(p + 7);
}
else {
xin0 = _mm_load_si128(input + 4);
xin1 = _mm_load_si128(input + 5);
xin2 = _mm_load_si128(input + 6);
xin3 = _mm_load_si128(input + 7);
xin4 = _mm_load_si128(input + 8);
xin5 = _mm_load_si128(input + 9);
xin6 = _mm_load_si128(input + 10);
xin7 = _mm_load_si128(input + 11);
}
if (props.isHeavy()) {
for (size_t i = 0; i < 16; i++) {
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
mix_and_propagate(xin0, xin1, xin2, xin3, xin4, xin5, xin6, xin7);
}
}
constexpr int output_increment = (64 << interleave) / sizeof(__m128i);
constexpr int prefetch_dist = 2048 / sizeof(__m128i);
__m128i* e = output + (N << interleave) - prefetch_dist;
__m128i* prefetch_ptr = output + prefetch_dist;
for (int i = 0; i < 2; ++i) {
do {
_mm_prefetch((const char*)(prefetch_ptr), _MM_HINT_T0);
_mm_prefetch((const char*)(prefetch_ptr + output_increment), _MM_HINT_T0);
aes_round<SOFT_AES>(k0, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k1, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k2, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k3, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k4, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k5, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k6, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k7, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k8, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
aes_round<SOFT_AES>(k9, &xin0, &xin1, &xin2, &xin3, &xin4, &xin5, &xin6, &xin7);
_mm_store_si128(output + 0, xin0);
_mm_store_si128(output + 1, xin1);
_mm_store_si128(output + 2, xin2);
_mm_store_si128(output + 3, xin3);
_mm_store_si128(output + output_increment + 0, xin4);
_mm_store_si128(output + output_increment + 1, xin5);
_mm_store_si128(output + output_increment + 2, xin6);
_mm_store_si128(output + output_increment + 3, xin7);
output += output_increment * 2;
prefetch_ptr += output_increment * 2;
} while (output < e);
e += prefetch_dist;
prefetch_ptr = output;
}
if (props.half_mem() && ctx->first_half) {
__m128i* p = reinterpret_cast<__m128i*>(ctx->save_state);
_mm_store_si128(p + 0, xin0);
_mm_store_si128(p + 1, xin1);
_mm_store_si128(p + 2, xin2);
_mm_store_si128(p + 3, xin3);
_mm_store_si128(p + 4, xin4);
_mm_store_si128(p + 5, xin5);
_mm_store_si128(p + 6, xin6);
_mm_store_si128(p + 7, xin7);
}
}
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
static NOINLINE void cn_implode_scratchpad(cryptonight_ctx *ctx)
{
constexpr CnAlgo<ALGO> props;
# ifdef XMRIG_VAES
if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) {
cn_implode_scratchpad_vaes(ctx, props.memory(), props.half_mem());
return;
}
# endif
constexpr bool IS_HEAVY = props.isHeavy();
constexpr size_t N = (props.memory() / sizeof(__m128i)) / (props.half_mem() ? 2 : 1);
__m128i xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7;
__m128i k0, k1, k2, k3, k4, k5, k6, k7, k8, k9;
const __m128i *input = reinterpret_cast<const __m128i*>(ctx->memory);
__m128i *output = reinterpret_cast<__m128i*>(ctx->state);
aes_genkey<SOFT_AES>(output + 2, &k0, &k1, &k2, &k3, &k4, &k5, &k6, &k7, &k8, &k9);
xout0 = _mm_load_si128(output + 4);
xout1 = _mm_load_si128(output + 5);
xout2 = _mm_load_si128(output + 6);
xout3 = _mm_load_si128(output + 7);
xout4 = _mm_load_si128(output + 8);
xout5 = _mm_load_si128(output + 9);
xout6 = _mm_load_si128(output + 10);
xout7 = _mm_load_si128(output + 11);
const __m128i* input_begin = input;
for (size_t part = 0; part < (props.half_mem() ? 2 : 1); ++part) {
if (props.half_mem() && (part == 1)) {
input = input_begin;
ctx->first_half = false;
cn_explode_scratchpad<ALGO, SOFT_AES, interleave>(ctx);
}
for (size_t i = 0; i < N;) {
xout0 = _mm_xor_si128(_mm_load_si128(input + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + 3), xout3);
constexpr int input_increment = (64 << interleave) / sizeof(__m128i);
xout4 = _mm_xor_si128(_mm_load_si128(input + input_increment + 0), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + input_increment + 1), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + input_increment + 2), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + input_increment + 3), xout7);
input += input_increment * 2;
i += 8;
if (i < N) {
_mm_prefetch((const char*)(input), _MM_HINT_T0);
_mm_prefetch((const char*)(input + input_increment), _MM_HINT_T0);
}
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
if (IS_HEAVY) {
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
}
}
if (IS_HEAVY) {
input = input_begin;
for (size_t i = 0; i < N;) {
xout0 = _mm_xor_si128(_mm_load_si128(input + 0), xout0);
xout1 = _mm_xor_si128(_mm_load_si128(input + 1), xout1);
xout2 = _mm_xor_si128(_mm_load_si128(input + 2), xout2);
xout3 = _mm_xor_si128(_mm_load_si128(input + 3), xout3);
input += (64 << interleave) / sizeof(__m128i);
xout4 = _mm_xor_si128(_mm_load_si128(input + 0), xout4);
xout5 = _mm_xor_si128(_mm_load_si128(input + 1), xout5);
xout6 = _mm_xor_si128(_mm_load_si128(input + 2), xout6);
xout7 = _mm_xor_si128(_mm_load_si128(input + 3), xout7);
input += (64 << interleave) / sizeof(__m128i);
i += 8;
if ((interleave > 0) && (i < props.memory() / sizeof(__m128i))) {
_mm_prefetch((const char*)(input), _MM_HINT_T0);
_mm_prefetch((const char*)(input + (64 << interleave) / sizeof(__m128i)), _MM_HINT_T0);
}
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
for (size_t i = 0; i < 16; i++) {
aes_round<SOFT_AES>(k0, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k1, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k2, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k3, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k4, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k5, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k6, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k7, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k8, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
aes_round<SOFT_AES>(k9, &xout0, &xout1, &xout2, &xout3, &xout4, &xout5, &xout6, &xout7);
mix_and_propagate(xout0, xout1, xout2, xout3, xout4, xout5, xout6, xout7);
}
}
_mm_store_si128(output + 4, xout0);
_mm_store_si128(output + 5, xout1);
_mm_store_si128(output + 6, xout2);
_mm_store_si128(output + 7, xout3);
_mm_store_si128(output + 8, xout4);
_mm_store_si128(output + 9, xout5);
_mm_store_si128(output + 10, xout6);
_mm_store_si128(output + 11, xout7);
}
} /* namespace xmrig */
static inline __m128i aes_round_tweak_div(const __m128i &in, const __m128i &key)
{
alignas(16) uint32_t k[4];
alignas(16) uint32_t x[4];
_mm_store_si128((__m128i*) k, key);
_mm_store_si128((__m128i*) x, _mm_xor_si128(in, _mm_set_epi64x(0xffffffffffffffff, 0xffffffffffffffff)));
#define BYTE(p, i) ((unsigned char*)&x[p])[i]
k[0] ^= saes_table[0][BYTE(0, 0)] ^ saes_table[1][BYTE(1, 1)] ^ saes_table[2][BYTE(2, 2)] ^ saes_table[3][BYTE(3, 3)];
x[0] ^= k[0];
k[1] ^= saes_table[0][BYTE(1, 0)] ^ saes_table[1][BYTE(2, 1)] ^ saes_table[2][BYTE(3, 2)] ^ saes_table[3][BYTE(0, 3)];
x[1] ^= k[1];
k[2] ^= saes_table[0][BYTE(2, 0)] ^ saes_table[1][BYTE(3, 1)] ^ saes_table[2][BYTE(0, 2)] ^ saes_table[3][BYTE(1, 3)];
x[2] ^= k[2];
k[3] ^= saes_table[0][BYTE(3, 0)] ^ saes_table[1][BYTE(0, 1)] ^ saes_table[2][BYTE(1, 2)] ^ saes_table[3][BYTE(2, 3)];
#undef BYTE
return _mm_load_si128((__m128i*)k);
}
static inline __m128i int_sqrt_v2(const uint64_t n0)
{
__m128d x = _mm_castsi128_pd(_mm_add_epi64(_mm_cvtsi64_si128(n0 >> 12), _mm_set_epi64x(0, 1023ULL << 52)));
x = _mm_sqrt_sd(_mm_setzero_pd(), x);
uint64_t r = static_cast<uint64_t>(_mm_cvtsi128_si64(_mm_castpd_si128(x)));
const uint64_t s = r >> 20;
r >>= 19;
uint64_t x2 = (s - (1022ULL << 32)) * (r - s - (1022ULL << 32) + 1);
# if (defined(_MSC_VER) || __GNUC__ > 7 || (__GNUC__ == 7 && __GNUC_MINOR__ > 1)) && (defined(__x86_64__) || defined(_M_AMD64))
_addcarry_u64(_subborrow_u64(0, x2, n0, (unsigned long long int*)&x2), r, 0, (unsigned long long int*)&r);
# else
if (x2 < n0) ++r;
# endif
return _mm_cvtsi64_si128(r);
}
void v4_soft_aes_compile_code(const V4_Instruction *code, int code_size, void *machine_code, xmrig::Assembly ASM);
alignas(64) static const uint32_t tweak1_table[256] = { 268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,268435456,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,805306368,0,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456,805306368,268435456 };
namespace xmrig {
template<Algorithm::Id ALGO>
static inline void cryptonight_monero_tweak(uint64_t *mem_out, const uint8_t *l, uint64_t idx, __m128i ax0, __m128i bx0, __m128i bx1, __m128i& cx)
{
constexpr CnAlgo<ALGO> props;
if (props.base() == Algorithm::CN_2) {
VARIANT2_SHUFFLE(l, idx, ax0, bx0, bx1, cx, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0));
_mm_store_si128(reinterpret_cast<__m128i *>(mem_out), _mm_xor_si128(bx0, cx));
} else {
__m128i tmp = _mm_xor_si128(bx0, cx);
mem_out[0] = _mm_cvtsi128_si64(tmp);
tmp = _mm_castps_si128(_mm_movehl_ps(_mm_castsi128_ps(tmp), _mm_castsi128_ps(tmp)));
uint64_t vh = _mm_cvtsi128_si64(tmp);
mem_out[1] = vh ^ tweak1_table[static_cast<uint32_t>(vh) >> 24];
}
}
static inline void cryptonight_conceal_tweak(__m128i& cx, __m128& conc_var)
{
__m128 r = _mm_add_ps(_mm_cvtepi32_ps(cx), conc_var);
r = _mm_mul_ps(r, _mm_mul_ps(r, r));
r = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x807FFFFF)), r);
r = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), r);
__m128 c_old = conc_var;
conc_var = _mm_add_ps(conc_var, r);
c_old = _mm_and_ps(_mm_castsi128_ps(_mm_set1_epi32(0x807FFFFF)), c_old);
c_old = _mm_or_ps(_mm_castsi128_ps(_mm_set1_epi32(0x40000000)), c_old);
__m128 nc = _mm_mul_ps(c_old, _mm_set1_ps(536870880.0f));
cx = _mm_xor_si128(cx, _mm_cvttps_epi32(nc));
}
#ifdef XMRIG_FEATURE_ASM
template<Algorithm::Id ALGO>
static void cryptonight_single_hash_gr_sse41(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height);
#endif
template<Algorithm::Id ALGO, bool SOFT_AES, int interleave>
inline void cryptonight_single_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
# ifdef XMRIG_FEATURE_ASM
if (!SOFT_AES) {
switch (ALGO) {
case Algorithm::CN_GR_0:
case Algorithm::CN_GR_1:
case Algorithm::CN_GR_2:
case Algorithm::CN_GR_3:
case Algorithm::CN_GR_4:
case Algorithm::CN_GR_5:
if (cn_sse41_enabled) {
cryptonight_single_hash_gr_sse41<ALGO>(input, size, output, ctx, height);
return;
}
break;
default:
break;
}
}
# endif
constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base();
# ifdef XMRIG_ALGO_CN_HEAVY
constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE;
# else
constexpr bool IS_CN_HEAVY_TUBE = false;
# endif
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 32);
return;
}
keccak(input, size, ctx[0]->state);
if (props.half_mem()) {
ctx[0]->first_half = true;
}
cn_explode_scratchpad<ALGO, SOFT_AES, interleave>(ctx[0]);
uint64_t *h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint8_t *l0 = ctx[0]->memory;
# ifdef XMRIG_FEATURE_ASM
if (SOFT_AES && props.isR()) {
if (!ctx[0]->generated_code_data.match(ALGO, height)) {
V4_Instruction code[256];
const int code_size = v4_random_math_init<ALGO>(code, height);
if (ALGO == Algorithm::CN_R) {
v4_soft_aes_compile_code(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code), Assembly::NONE);
}
ctx[0]->generated_code_data = { ALGO, height };
}
ctx[0]->saes_table = reinterpret_cast<const uint32_t*>(saes_table);
ctx[0]->generated_code(ctx);
} else {
# endif
VARIANT1_INIT(0);
VARIANT2_INIT(0);
VARIANT2_SET_ROUNDING_MODE();
VARIANT4_RANDOM_MATH_INIT(0);
uint64_t al0 = h0[0] ^ h0[4];
uint64_t ah0 = h0[1] ^ h0[5];
uint64_t idx0 = al0;
__m128i bx0 = _mm_set_epi64x(static_cast<int64_t>(h0[3] ^ h0[7]), static_cast<int64_t>(h0[2] ^ h0[6]));
__m128i bx1 = _mm_set_epi64x(static_cast<int64_t>(h0[9] ^ h0[11]), static_cast<int64_t>(h0[8] ^ h0[10]));
__m128 conc_var;
if (ALGO == Algorithm::CN_CCX) {
conc_var = _mm_setzero_ps();
RESTORE_ROUNDING_MODE();
}
for (size_t i = 0; i < props.iterations(); i++) {
__m128i cx;
if (IS_CN_HEAVY_TUBE || !SOFT_AES) {
cx = _mm_load_si128(reinterpret_cast<const __m128i *>(&l0[interleaved_index<interleave>(idx0 & MASK)]));
if (ALGO == Algorithm::CN_CCX) {
cryptonight_conceal_tweak(cx, conc_var);
}
}
const __m128i ax0 = _mm_set_epi64x(static_cast<int64_t>(ah0), static_cast<int64_t>(al0));
if (IS_CN_HEAVY_TUBE) {
cx = aes_round_tweak_div(cx, ax0);
}
else if (SOFT_AES) {
if (ALGO == Algorithm::CN_CCX) {
cx = _mm_load_si128(reinterpret_cast<const __m128i*>(&l0[interleaved_index<interleave>(idx0 & MASK)]));
cryptonight_conceal_tweak(cx, conc_var);
cx = soft_aesenc(&cx, ax0, reinterpret_cast<const uint32_t*>(saes_table));
}
else {
cx = soft_aesenc(&l0[interleaved_index<interleave>(idx0 & MASK)], ax0, reinterpret_cast<const uint32_t*>(saes_table));
}
}
else {
cx = _mm_aesenc_si128(cx, ax0);
}
if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) {
cryptonight_monero_tweak<ALGO>(reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)]), l0, idx0 & MASK, ax0, bx0, bx1, cx);
} else {
_mm_store_si128(reinterpret_cast<__m128i *>(&l0[interleaved_index<interleave>(idx0 & MASK)]), _mm_xor_si128(bx0, cx));
}
idx0 = static_cast<uint64_t>(_mm_cvtsi128_si64(cx));
uint64_t hi, lo, cl, ch;
cl = (reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)]))[0];
ch = (reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)]))[1];
if (BASE == Algorithm::CN_2) {
if (props.isR()) {
VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx0, bx1);
if (ALGO == Algorithm::CN_R) {
al0 ^= r0[2] | (static_cast<uint64_t>(r0[3]) << 32);
ah0 ^= r0[0] | (static_cast<uint64_t>(r0[1]) << 32);
}
} else {
VARIANT2_INTEGER_MATH(0, cl, cx);
}
}
lo = __umul128(idx0, cl, &hi);
if (BASE == Algorithm::CN_2) {
if (ALGO == Algorithm::CN_R) {
VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx0, bx1, cx, 0);
} else {
VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx0, bx1, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0));
}
}
al0 += hi;
ah0 += lo;
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[0] = al0;
if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) {
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[1] = ah0 ^ tweak1_2_0 ^ al0;
} else if (BASE == Algorithm::CN_1) {
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[1] = ah0 ^ tweak1_2_0;
} else {
reinterpret_cast<uint64_t*>(&l0[interleaved_index<interleave>(idx0 & MASK)])[1] = ah0;
}
al0 ^= cl;
ah0 ^= ch;
idx0 = al0;
# ifdef XMRIG_ALGO_CN_HEAVY
if (props.isHeavy()) {
int64_t n = ((int64_t*)&l0[interleaved_index<interleave>(idx0 & MASK)])[0];
int64_t d = ((int32_t*)&l0[interleaved_index<interleave>(idx0 & MASK)])[2];
int64_t d5;
# if defined(_MSC_VER) || (defined(__GNUC__) && (__GNUC__ == 8)) || !defined(XMRIG_64_BIT)
d5 = d | 5;
# else
// Workaround for stupid GCC which converts to 32 bit before doing "| 5" and then converts back to 64 bit
asm("mov %1, %0\n\tor $5, %0" : "=r"(d5) : "r"(d));
# endif
int64_t q = n / d5;
((int64_t*)&l0[interleaved_index<interleave>(idx0 & MASK)])[0] = n ^ q;
if (ALGO == Algorithm::CN_HEAVY_XHV) {
d = ~d;
}
idx0 = d ^ q;
}
# endif
if (BASE == Algorithm::CN_2) {
bx1 = bx0;
}
bx0 = cx;
}
# ifdef XMRIG_FEATURE_ASM
}
# endif
cn_implode_scratchpad<ALGO, SOFT_AES, interleave>(ctx[0]);
keccakf(h0, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
}
} /* namespace xmrig */
#ifdef XMRIG_FEATURE_ASM
extern "C" void cnv1_single_mainloop_asm(cryptonight_ctx * *ctx);
extern "C" void cnv1_double_mainloop_asm(cryptonight_ctx **ctx);
extern "C" void cnv1_quad_mainloop_asm(cryptonight_ctx **ctx);
extern "C" void cnv2_mainloop_ivybridge_asm(cryptonight_ctx **ctx);
#ifdef XMRIG_FEATURE_ASM_AMD
extern "C" void cnv2_mainloop_ryzen_asm(cryptonight_ctx **ctx);
extern "C" void cnv2_mainloop_bulldozer_asm(cryptonight_ctx **ctx);
#endif
extern "C" void cnv2_double_mainloop_sandybridge_asm(cryptonight_ctx **ctx);
extern "C" void cnv2_rwz_mainloop_asm(cryptonight_ctx **ctx);
extern "C" void cnv2_rwz_double_mainloop_asm(cryptonight_ctx **ctx);
#ifdef XMRIG_FEATURE_ASM_AMD
extern "C" void cnv2_upx_double_mainloop_zen3_asm(cryptonight_ctx **ctx);
#endif
namespace xmrig {
typedef void (*cn_mainloop_fun)(cryptonight_ctx **ctx);
extern cn_mainloop_fun cn_half_mainloop_ivybridge_asm;
#ifdef XMRIG_FEATURE_ASM_AMD
extern cn_mainloop_fun cn_half_mainloop_ryzen_asm;
extern cn_mainloop_fun cn_half_mainloop_bulldozer_asm;
#endif
extern cn_mainloop_fun cn_half_double_mainloop_sandybridge_asm;
extern cn_mainloop_fun cn_trtl_mainloop_ivybridge_asm;
#ifdef XMRIG_FEATURE_ASM_AMD
extern cn_mainloop_fun cn_trtl_mainloop_ryzen_asm;
extern cn_mainloop_fun cn_trtl_mainloop_bulldozer_asm;
#endif
extern cn_mainloop_fun cn_trtl_double_mainloop_sandybridge_asm;
extern cn_mainloop_fun cn_tlo_mainloop_ivybridge_asm;
#ifdef XMRIG_FEATURE_ASM_AMD
extern cn_mainloop_fun cn_tlo_mainloop_ryzen_asm;
extern cn_mainloop_fun cn_tlo_mainloop_bulldozer_asm;
#endif
extern cn_mainloop_fun cn_tlo_double_mainloop_sandybridge_asm;
extern cn_mainloop_fun cn_zls_mainloop_ivybridge_asm;
#ifdef XMRIG_FEATURE_ASM_AMD
extern cn_mainloop_fun cn_zls_mainloop_ryzen_asm;
extern cn_mainloop_fun cn_zls_mainloop_bulldozer_asm;
#endif
extern cn_mainloop_fun cn_zls_double_mainloop_sandybridge_asm;
extern cn_mainloop_fun cn_double_mainloop_ivybridge_asm;
#ifdef XMRIG_FEATURE_ASM_AMD
extern cn_mainloop_fun cn_double_mainloop_ryzen_asm;
extern cn_mainloop_fun cn_double_mainloop_bulldozer_asm;
#endif
extern cn_mainloop_fun cn_double_double_mainloop_sandybridge_asm;
extern cn_mainloop_fun cn_upx2_mainloop_asm;
extern cn_mainloop_fun cn_upx2_double_mainloop_asm;
extern cn_mainloop_fun cn_gr0_single_mainloop_asm;
extern cn_mainloop_fun cn_gr1_single_mainloop_asm;
extern cn_mainloop_fun cn_gr2_single_mainloop_asm;
extern cn_mainloop_fun cn_gr3_single_mainloop_asm;
extern cn_mainloop_fun cn_gr4_single_mainloop_asm;
extern cn_mainloop_fun cn_gr5_single_mainloop_asm;
extern cn_mainloop_fun cn_gr0_double_mainloop_asm;
extern cn_mainloop_fun cn_gr1_double_mainloop_asm;
extern cn_mainloop_fun cn_gr2_double_mainloop_asm;
extern cn_mainloop_fun cn_gr3_double_mainloop_asm;
extern cn_mainloop_fun cn_gr4_double_mainloop_asm;
extern cn_mainloop_fun cn_gr5_double_mainloop_asm;
extern cn_mainloop_fun cn_gr0_quad_mainloop_asm;
extern cn_mainloop_fun cn_gr1_quad_mainloop_asm;
extern cn_mainloop_fun cn_gr2_quad_mainloop_asm;
extern cn_mainloop_fun cn_gr3_quad_mainloop_asm;
extern cn_mainloop_fun cn_gr4_quad_mainloop_asm;
extern cn_mainloop_fun cn_gr5_quad_mainloop_asm;
} // namespace xmrig
void v4_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
void v4_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM);
template<xmrig::Algorithm::Id ALGO>
void cn_r_compile_code(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM)
{
v4_compile_code(code, code_size, machine_code, ASM);
}
template<xmrig::Algorithm::Id ALGO>
void cn_r_compile_code_double(const V4_Instruction* code, int code_size, void* machine_code, xmrig::Assembly ASM)
{
v4_compile_code_double(code, code_size, machine_code, ASM);
}
namespace xmrig {
template<Algorithm::Id ALGO, Assembly::Id ASM>
inline void cryptonight_single_hash_asm(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
if (props.isR() && !ctx[0]->generated_code_data.match(ALGO, height)) {
V4_Instruction code[256];
const int code_size = v4_random_math_init<ALGO>(code, height);
cn_r_compile_code<ALGO>(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code), ASM);
ctx[0]->generated_code_data = { ALGO, height };
}
keccak(input, size, ctx[0]->state);
if (props.half_mem()) {
ctx[0]->first_half = true;
}
cn_explode_scratchpad<ALGO, false, 0>(ctx[0]);
if (ALGO == Algorithm::CN_2) {
if (ASM == Assembly::INTEL) {
cnv2_mainloop_ivybridge_asm(ctx);
}
# ifdef XMRIG_FEATURE_ASM_AMD
else if (ASM == Assembly::RYZEN) {
cnv2_mainloop_ryzen_asm(ctx);
}
else {
cnv2_mainloop_bulldozer_asm(ctx);
}
# endif
}
else if (ALGO == Algorithm::CN_HALF) {
if (ASM == Assembly::INTEL) {
cn_half_mainloop_ivybridge_asm(ctx);
}
# ifdef XMRIG_FEATURE_ASM_AMD
else if (ASM == Assembly::RYZEN) {
cn_half_mainloop_ryzen_asm(ctx);
}
else {
cn_half_mainloop_bulldozer_asm(ctx);
}
# endif
}
# ifdef XMRIG_ALGO_CN_PICO
else if (ALGO == Algorithm::CN_PICO_0) {
if (ASM == Assembly::INTEL) {
cn_trtl_mainloop_ivybridge_asm(ctx);
}
# ifdef XMRIG_FEATURE_ASM_AMD
else if (ASM == Assembly::RYZEN) {
cn_trtl_mainloop_ryzen_asm(ctx);
}
else {
cn_trtl_mainloop_bulldozer_asm(ctx);
}
# endif
}
else if (ALGO == Algorithm::CN_PICO_TLO) {
if (ASM == Assembly::INTEL) {
cn_tlo_mainloop_ivybridge_asm(ctx);
}
# ifdef XMRIG_FEATURE_ASM_AMD
else if (ASM == Assembly::RYZEN) {
cn_tlo_mainloop_ryzen_asm(ctx);
}
else {
cn_tlo_mainloop_bulldozer_asm(ctx);
}
# endif
}
# endif
else if (ALGO == Algorithm::CN_RWZ) {
cnv2_rwz_mainloop_asm(ctx);
}
else if (ALGO == Algorithm::CN_ZLS) {
if (ASM == Assembly::INTEL) {
cn_zls_mainloop_ivybridge_asm(ctx);
}
# ifdef XMRIG_FEATURE_ASM_AMD
else if (ASM == Assembly::RYZEN) {
cn_zls_mainloop_ryzen_asm(ctx);
}
else {
cn_zls_mainloop_bulldozer_asm(ctx);
}
# endif
}
else if (ALGO == Algorithm::CN_DOUBLE) {
if (ASM == Assembly::INTEL) {
cn_double_mainloop_ivybridge_asm(ctx);
}
# ifdef XMRIG_FEATURE_ASM_AMD
else if (ASM == Assembly::RYZEN) {
cn_double_mainloop_ryzen_asm(ctx);
}
else {
cn_double_mainloop_bulldozer_asm(ctx);
}
# endif
}
# ifdef XMRIG_ALGO_CN_FEMTO
else if (ALGO == Algorithm::CN_UPX2) {
cn_upx2_mainloop_asm(ctx);
}
# endif
else if (props.isR()) {
ctx[0]->generated_code(ctx);
}
cn_implode_scratchpad<ALGO, false, 0>(ctx[0]);
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
}
template<Algorithm::Id ALGO, Assembly::Id ASM>
inline void cryptonight_double_hash_asm(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
if (props.isR() && !ctx[0]->generated_code_data.match(ALGO, height)) {
V4_Instruction code[256];
const int code_size = v4_random_math_init<ALGO>(code, height);
cn_r_compile_code_double<ALGO>(code, code_size, reinterpret_cast<void*>(ctx[0]->generated_code), ASM);
ctx[0]->generated_code_data = { ALGO, height };
}
keccak(input, size, ctx[0]->state);
keccak(input + size, size, ctx[1]->state);
if (props.half_mem()) {
ctx[0]->first_half = true;
ctx[1]->first_half = true;
}
# ifdef XMRIG_VAES
if (!props.isHeavy() && cn_vaes_enabled) {
cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
}
else
# endif
{
cn_explode_scratchpad<ALGO, false, 0>(ctx[0]);
cn_explode_scratchpad<ALGO, false, 0>(ctx[1]);
}
if (ALGO == Algorithm::CN_2) {
cnv2_double_mainloop_sandybridge_asm(ctx);
}
else if (ALGO == Algorithm::CN_HALF) {
cn_half_double_mainloop_sandybridge_asm(ctx);
}
# ifdef XMRIG_ALGO_CN_PICO
else if (ALGO == Algorithm::CN_PICO_0) {
cn_trtl_double_mainloop_sandybridge_asm(ctx);
}
else if (ALGO == Algorithm::CN_PICO_TLO) {
cn_tlo_double_mainloop_sandybridge_asm(ctx);
}
# endif
# ifdef XMRIG_ALGO_CN_FEMTO
else if (ALGO == Algorithm::CN_UPX2) {
# ifdef XMRIG_FEATURE_ASM_AMD
if (Cpu::info()->arch() == ICpuInfo::ARCH_ZEN3) {
cnv2_upx_double_mainloop_zen3_asm(ctx);
}
else {
cn_upx2_double_mainloop_asm(ctx);
}
# else
cn_upx2_double_mainloop_asm(ctx);
# endif
}
# endif
else if (ALGO == Algorithm::CN_RWZ) {
cnv2_rwz_double_mainloop_asm(ctx);
}
else if (ALGO == Algorithm::CN_ZLS) {
cn_zls_double_mainloop_sandybridge_asm(ctx);
}
else if (ALGO == Algorithm::CN_DOUBLE) {
cn_double_double_mainloop_sandybridge_asm(ctx);
}
else if (props.isR()) {
ctx[0]->generated_code(ctx);
}
# ifdef XMRIG_VAES
if (!props.isHeavy() && cn_vaes_enabled) {
cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
}
else
# endif
{
cn_implode_scratchpad<ALGO, false, 0>(ctx[0]);
cn_implode_scratchpad<ALGO, false, 0>(ctx[1]);
}
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
keccakf(reinterpret_cast<uint64_t*>(ctx[1]->state), 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
}
} /* namespace xmrig */
#endif
namespace xmrig {
#ifdef XMRIG_FEATURE_ASM
template<Algorithm::Id ALGO>
static NOINLINE void cryptonight_single_hash_gr_sse41(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
constexpr Algorithm::Id BASE = props.base();
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 32);
return;
}
keccak(input, size, ctx[0]->state);
if (props.half_mem()) {
ctx[0]->first_half = true;
}
cn_explode_scratchpad<ALGO, false, 0>(ctx[0]);
VARIANT1_INIT(0);
ctx[0]->tweak1_2 = tweak1_2_0;
ctx[0]->tweak1_table = tweak1_table;
if (ALGO == Algorithm::CN_GR_0) cn_gr0_single_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_1) cn_gr1_single_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_2) cn_gr2_single_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_3) cn_gr3_single_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_4) cn_gr4_single_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_5) cn_gr5_single_mainloop_asm(ctx);
cn_implode_scratchpad<ALGO, false, 0>(ctx[0]);
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
}
template<Algorithm::Id ALGO>
static NOINLINE void cryptonight_double_hash_gr_sse41(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
constexpr Algorithm::Id BASE = props.base();
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 64);
return;
}
keccak(input, size, ctx[0]->state);
keccak(input + size, size, ctx[1]->state);
if (props.half_mem()) {
ctx[0]->first_half = true;
ctx[1]->first_half = true;
}
# ifdef XMRIG_VAES
if (!props.isHeavy() && cn_vaes_enabled) {
cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
}
else
# endif
{
cn_explode_scratchpad<ALGO, false, 0>(ctx[0]);
cn_explode_scratchpad<ALGO, false, 0>(ctx[1]);
}
VARIANT1_INIT(0);
VARIANT1_INIT(1);
ctx[0]->tweak1_2 = tweak1_2_0;
ctx[1]->tweak1_2 = tweak1_2_1;
ctx[0]->tweak1_table = tweak1_table;
if (ALGO == Algorithm::CN_GR_0) cn_gr0_double_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_1) cn_gr1_double_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_2) cn_gr2_double_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_3) cn_gr3_double_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_4) cn_gr4_double_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_5) cn_gr5_double_mainloop_asm(ctx);
# ifdef XMRIG_VAES
if (!props.isHeavy() && cn_vaes_enabled) {
cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
}
else
# endif
{
cn_implode_scratchpad<ALGO, false, 0>(ctx[0]);
cn_implode_scratchpad<ALGO, false, 0>(ctx[1]);
}
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
keccakf(reinterpret_cast<uint64_t*>(ctx[1]->state), 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
}
#endif
template<Algorithm::Id ALGO, bool SOFT_AES>
inline void cryptonight_double_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
# ifdef XMRIG_FEATURE_ASM
if (!SOFT_AES) {
switch (ALGO) {
case Algorithm::CN_GR_0:
case Algorithm::CN_GR_1:
case Algorithm::CN_GR_2:
case Algorithm::CN_GR_3:
case Algorithm::CN_GR_4:
case Algorithm::CN_GR_5:
if (cn_sse41_enabled) {
cryptonight_double_hash_gr_sse41<ALGO>(input, size, output, ctx, height);
return;
}
break;
default:
break;
}
}
# endif
constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base();
# ifdef XMRIG_ALGO_CN_HEAVY
constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE;
# else
constexpr bool IS_CN_HEAVY_TUBE = false;
# endif
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 64);
return;
}
keccak(input, size, ctx[0]->state);
keccak(input + size, size, ctx[1]->state);
uint8_t *l0 = ctx[0]->memory;
uint8_t *l1 = ctx[1]->memory;
uint64_t *h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t *h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
VARIANT1_INIT(0);
VARIANT1_INIT(1);
VARIANT2_INIT(0);
VARIANT2_INIT(1);
VARIANT2_SET_ROUNDING_MODE();
VARIANT4_RANDOM_MATH_INIT(0);
VARIANT4_RANDOM_MATH_INIT(1);
if (props.half_mem()) {
ctx[0]->first_half = true;
ctx[1]->first_half = true;
}
# ifdef XMRIG_VAES
if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) {
cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
}
else
# endif
{
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[0]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[1]);
}
uint64_t al0 = h0[0] ^ h0[4];
uint64_t al1 = h1[0] ^ h1[4];
uint64_t ah0 = h0[1] ^ h0[5];
uint64_t ah1 = h1[1] ^ h1[5];
__m128i bx00 = _mm_set_epi64x(h0[3] ^ h0[7], h0[2] ^ h0[6]);
__m128i bx01 = _mm_set_epi64x(h0[9] ^ h0[11], h0[8] ^ h0[10]);
__m128i bx10 = _mm_set_epi64x(h1[3] ^ h1[7], h1[2] ^ h1[6]);
__m128i bx11 = _mm_set_epi64x(h1[9] ^ h1[11], h1[8] ^ h1[10]);
__m128 conc_var0, conc_var1;
if (ALGO == Algorithm::CN_CCX) {
conc_var0 = _mm_setzero_ps();
conc_var1 = _mm_setzero_ps();
RESTORE_ROUNDING_MODE();
}
uint64_t idx0 = al0;
uint64_t idx1 = al1;
for (size_t i = 0; i < props.iterations(); i++) {
__m128i cx0, cx1;
if (IS_CN_HEAVY_TUBE || !SOFT_AES) {
cx0 = _mm_load_si128(reinterpret_cast<const __m128i *>(&l0[idx0 & MASK]));
cx1 = _mm_load_si128(reinterpret_cast<const __m128i *>(&l1[idx1 & MASK]));
if (ALGO == Algorithm::CN_CCX) {
cryptonight_conceal_tweak(cx0, conc_var0);
cryptonight_conceal_tweak(cx1, conc_var1);
}
}
const __m128i ax0 = _mm_set_epi64x(ah0, al0);
const __m128i ax1 = _mm_set_epi64x(ah1, al1);
if (IS_CN_HEAVY_TUBE) {
cx0 = aes_round_tweak_div(cx0, ax0);
cx1 = aes_round_tweak_div(cx1, ax1);
}
else if (SOFT_AES) {
if (ALGO == Algorithm::CN_CCX) {
cx0 = _mm_load_si128(reinterpret_cast<const __m128i*>(&l0[idx0 & MASK]));
cx1 = _mm_load_si128(reinterpret_cast<const __m128i*>(&l1[idx1 & MASK]));
cryptonight_conceal_tweak(cx0, conc_var0);
cryptonight_conceal_tweak(cx1, conc_var1);
cx0 = soft_aesenc(&cx0, ax0, reinterpret_cast<const uint32_t*>(saes_table));
cx1 = soft_aesenc(&cx1, ax1, reinterpret_cast<const uint32_t*>(saes_table));
}
else {
cx0 = soft_aesenc(&l0[idx0 & MASK], ax0, reinterpret_cast<const uint32_t*>(saes_table));
cx1 = soft_aesenc(&l1[idx1 & MASK], ax1, reinterpret_cast<const uint32_t*>(saes_table));
}
}
else {
cx0 = _mm_aesenc_si128(cx0, ax0);
cx1 = _mm_aesenc_si128(cx1, ax1);
}
if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) {
cryptonight_monero_tweak<ALGO>((uint64_t*)&l0[idx0 & MASK], l0, idx0 & MASK, ax0, bx00, bx01, cx0);
cryptonight_monero_tweak<ALGO>((uint64_t*)&l1[idx1 & MASK], l1, idx1 & MASK, ax1, bx10, bx11, cx1);
} else {
_mm_store_si128((__m128i *) &l0[idx0 & MASK], _mm_xor_si128(bx00, cx0));
_mm_store_si128((__m128i *) &l1[idx1 & MASK], _mm_xor_si128(bx10, cx1));
}
idx0 = _mm_cvtsi128_si64(cx0);
idx1 = _mm_cvtsi128_si64(cx1);
uint64_t hi, lo, cl, ch;
cl = ((uint64_t*) &l0[idx0 & MASK])[0];
ch = ((uint64_t*) &l0[idx0 & MASK])[1];
if (BASE == Algorithm::CN_2) {
if (props.isR()) {
VARIANT4_RANDOM_MATH(0, al0, ah0, cl, bx00, bx01);
if (ALGO == Algorithm::CN_R) {
al0 ^= r0[2] | ((uint64_t)(r0[3]) << 32);
ah0 ^= r0[0] | ((uint64_t)(r0[1]) << 32);
}
} else {
VARIANT2_INTEGER_MATH(0, cl, cx0);
}
}
lo = __umul128(idx0, cl, &hi);
if (BASE == Algorithm::CN_2) {
if (ALGO == Algorithm::CN_R) {
VARIANT2_SHUFFLE(l0, idx0 & MASK, ax0, bx00, bx01, cx0, 0);
} else {
VARIANT2_SHUFFLE2(l0, idx0 & MASK, ax0, bx00, bx01, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0));
}
}
al0 += hi;
ah0 += lo;
((uint64_t*)&l0[idx0 & MASK])[0] = al0;
if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) {
((uint64_t*) &l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0 ^ al0;
} else if (BASE == Algorithm::CN_1) {
((uint64_t*) &l0[idx0 & MASK])[1] = ah0 ^ tweak1_2_0;
} else {
((uint64_t*) &l0[idx0 & MASK])[1] = ah0;
}
al0 ^= cl;
ah0 ^= ch;
idx0 = al0;
# ifdef XMRIG_ALGO_CN_HEAVY
if (props.isHeavy()) {
int64_t n = ((int64_t*)&l0[idx0 & MASK])[0];
int32_t d = ((int32_t*)&l0[idx0 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l0[idx0 & MASK])[0] = n ^ q;
if (ALGO == Algorithm::CN_HEAVY_XHV) {
d = ~d;
}
idx0 = d ^ q;
}
# endif
cl = ((uint64_t*) &l1[idx1 & MASK])[0];
ch = ((uint64_t*) &l1[idx1 & MASK])[1];
if (BASE == Algorithm::CN_2) {
if (props.isR()) {
VARIANT4_RANDOM_MATH(1, al1, ah1, cl, bx10, bx11);
if (ALGO == Algorithm::CN_R) {
al1 ^= r1[2] | ((uint64_t)(r1[3]) << 32);
ah1 ^= r1[0] | ((uint64_t)(r1[1]) << 32);
}
} else {
VARIANT2_INTEGER_MATH(1, cl, cx1);
}
}
lo = __umul128(idx1, cl, &hi);
if (BASE == Algorithm::CN_2) {
if (ALGO == Algorithm::CN_R) {
VARIANT2_SHUFFLE(l1, idx1 & MASK, ax1, bx10, bx11, cx1, 0);
} else {
VARIANT2_SHUFFLE2(l1, idx1 & MASK, ax1, bx10, bx11, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0));
}
}
al1 += hi;
ah1 += lo;
((uint64_t*)&l1[idx1 & MASK])[0] = al1;
if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) {
((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1 ^ al1;
} else if (BASE == Algorithm::CN_1) {
((uint64_t*)&l1[idx1 & MASK])[1] = ah1 ^ tweak1_2_1;
} else {
((uint64_t*)&l1[idx1 & MASK])[1] = ah1;
}
al1 ^= cl;
ah1 ^= ch;
idx1 = al1;
# ifdef XMRIG_ALGO_CN_HEAVY
if (props.isHeavy()) {
int64_t n = ((int64_t*)&l1[idx1 & MASK])[0];
int32_t d = ((int32_t*)&l1[idx1 & MASK])[2];
int64_t q = n / (d | 0x5);
((int64_t*)&l1[idx1 & MASK])[0] = n ^ q;
if (ALGO == Algorithm::CN_HEAVY_XHV) {
d = ~d;
}
idx1 = d ^ q;
}
# endif
if (BASE == Algorithm::CN_2) {
bx01 = bx00;
bx11 = bx10;
}
bx00 = cx0;
bx10 = cx1;
}
# ifdef XMRIG_VAES
if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) {
cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
}
else
# endif
{
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[0]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[1]);
}
keccakf(h0, 24);
keccakf(h1, 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
}
#ifdef XMRIG_FEATURE_ASM
template<Algorithm::Id ALGO>
static NOINLINE void cryptonight_quad_hash_gr_sse41(const uint8_t* __restrict__ input, size_t size, uint8_t* __restrict__ output, cryptonight_ctx** __restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
constexpr Algorithm::Id BASE = props.base();
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 32 * 4);
return;
}
keccak(input + size * 0, size, ctx[0]->state);
keccak(input + size * 1, size, ctx[1]->state);
keccak(input + size * 2, size, ctx[2]->state);
keccak(input + size * 3, size, ctx[3]->state);
if (props.half_mem()) {
ctx[0]->first_half = true;
ctx[1]->first_half = true;
ctx[2]->first_half = true;
ctx[3]->first_half = true;
}
# ifdef XMRIG_VAES
if (!props.isHeavy() && cn_vaes_enabled) {
cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
cn_explode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem());
}
else
# endif
{
cn_explode_scratchpad<ALGO, false, 0>(ctx[0]);
cn_explode_scratchpad<ALGO, false, 0>(ctx[1]);
cn_explode_scratchpad<ALGO, false, 0>(ctx[2]);
cn_explode_scratchpad<ALGO, false, 0>(ctx[3]);
}
VARIANT1_INIT(0); ctx[0]->tweak1_2 = tweak1_2_0;
VARIANT1_INIT(1); ctx[1]->tweak1_2 = tweak1_2_1;
VARIANT1_INIT(2); ctx[2]->tweak1_2 = tweak1_2_2;
VARIANT1_INIT(3); ctx[3]->tweak1_2 = tweak1_2_3;
ctx[0]->tweak1_table = tweak1_table;
if (ALGO == Algorithm::CN_GR_0) cn_gr0_quad_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_1) cn_gr1_quad_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_2) cn_gr2_quad_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_3) cn_gr3_quad_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_4) cn_gr4_quad_mainloop_asm(ctx);
if (ALGO == Algorithm::CN_GR_5) cn_gr5_quad_mainloop_asm(ctx);
# ifdef XMRIG_VAES
if (!props.isHeavy() && cn_vaes_enabled) {
cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
cn_implode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem());
}
else
# endif
{
cn_implode_scratchpad<ALGO, false, 0>(ctx[0]);
cn_implode_scratchpad<ALGO, false, 0>(ctx[1]);
cn_implode_scratchpad<ALGO, false, 0>(ctx[2]);
cn_implode_scratchpad<ALGO, false, 0>(ctx[3]);
}
keccakf(reinterpret_cast<uint64_t*>(ctx[0]->state), 24);
keccakf(reinterpret_cast<uint64_t*>(ctx[1]->state), 24);
keccakf(reinterpret_cast<uint64_t*>(ctx[2]->state), 24);
keccakf(reinterpret_cast<uint64_t*>(ctx[3]->state), 24);
extra_hashes[ctx[0]->state[0] & 3](ctx[0]->state, 200, output);
extra_hashes[ctx[1]->state[0] & 3](ctx[1]->state, 200, output + 32);
extra_hashes[ctx[2]->state[0] & 3](ctx[2]->state, 200, output + 64);
extra_hashes[ctx[3]->state[0] & 3](ctx[3]->state, 200, output + 96);
}
#endif
#define CN_STEP1(a, b0, b1, c, l, ptr, idx, conc_var) \
ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \
c = _mm_load_si128(ptr); \
if (ALGO == Algorithm::CN_CCX) { \
cryptonight_conceal_tweak(c, conc_var); \
}
#define CN_STEP2(a, b0, b1, c, l, ptr, idx) \
if (IS_CN_HEAVY_TUBE) { \
c = aes_round_tweak_div(c, a); \
} \
else if (SOFT_AES) { \
c = soft_aesenc(&c, a, (const uint32_t*)saes_table); \
} else { \
c = _mm_aesenc_si128(c, a); \
} \
\
if (BASE == Algorithm::CN_1 || BASE == Algorithm::CN_2) { \
cryptonight_monero_tweak<ALGO>((uint64_t*)ptr, l, idx & MASK, a, b0, b1, c); \
} else { \
_mm_store_si128(ptr, _mm_xor_si128(b0, c)); \
}
#define CN_STEP3(part, a, b0, b1, c, l, ptr, idx) \
idx = _mm_cvtsi128_si64(c); \
ptr = reinterpret_cast<__m128i*>(&l[idx & MASK]); \
uint64_t cl##part = ((uint64_t*)ptr)[0]; \
uint64_t ch##part = ((uint64_t*)ptr)[1];
#define CN_STEP4(part, a, b0, b1, c, l, mc, ptr, idx) \
uint64_t al##part, ah##part; \
if (BASE == Algorithm::CN_2) { \
if (props.isR()) { \
al##part = _mm_cvtsi128_si64(a); \
ah##part = _mm_cvtsi128_si64(_mm_srli_si128(a, 8)); \
VARIANT4_RANDOM_MATH(part, al##part, ah##part, cl##part, b0, b1); \
if (ALGO == Algorithm::CN_R) { \
al##part ^= r##part[2] | ((uint64_t)(r##part[3]) << 32); \
ah##part ^= r##part[0] | ((uint64_t)(r##part[1]) << 32); \
} \
} else { \
VARIANT2_INTEGER_MATH(part, cl##part, c); \
} \
} \
lo = __umul128(idx, cl##part, &hi); \
if (BASE == Algorithm::CN_2) { \
if (ALGO == Algorithm::CN_R) { \
VARIANT2_SHUFFLE(l, idx & MASK, a, b0, b1, c, 0); \
} else { \
VARIANT2_SHUFFLE2(l, idx & MASK, a, b0, b1, hi, lo, (((ALGO == Algorithm::CN_RWZ) || (ALGO == Algorithm::CN_UPX2)) ? 1 : 0)); \
} \
} \
if (ALGO == Algorithm::CN_R) { \
a = _mm_set_epi64x(ah##part, al##part); \
} \
a = _mm_add_epi64(a, _mm_set_epi64x(lo, hi)); \
\
if (BASE == Algorithm::CN_1) { \
_mm_store_si128(ptr, _mm_xor_si128(a, mc)); \
\
if (IS_CN_HEAVY_TUBE || ALGO == Algorithm::CN_RTO) { \
((uint64_t*)ptr)[1] ^= ((uint64_t*)ptr)[0]; \
} \
} else { \
_mm_store_si128(ptr, a); \
} \
\
a = _mm_xor_si128(a, _mm_set_epi64x(ch##part, cl##part)); \
idx = _mm_cvtsi128_si64(a); \
if (props.isHeavy()) { \
int64_t n = ((int64_t*)&l[idx & MASK])[0]; \
int32_t d = ((int32_t*)&l[idx & MASK])[2]; \
int64_t q = n / (d | 0x5); \
((int64_t*)&l[idx & MASK])[0] = n ^ q; \
if (IS_CN_HEAVY_XHV) { \
d = ~d; \
} \
\
idx = d ^ q; \
} \
if (BASE == Algorithm::CN_2) { \
b1 = b0; \
} \
b0 = c;
#define CONST_INIT(ctx, n) \
__m128i mc##n; \
__m128i division_result_xmm_##n; \
__m128i sqrt_result_xmm_##n; \
if (BASE == Algorithm::CN_1) { \
mc##n = _mm_set_epi64x(*reinterpret_cast<const uint64_t*>(input + n * size + 35) ^ \
*(reinterpret_cast<const uint64_t*>((ctx)->state) + 24), 0); \
} \
if (BASE == Algorithm::CN_2) { \
division_result_xmm_##n = _mm_cvtsi64_si128(h##n[12]); \
sqrt_result_xmm_##n = _mm_cvtsi64_si128(h##n[13]); \
} \
__m128i ax##n = _mm_set_epi64x(h##n[1] ^ h##n[5], h##n[0] ^ h##n[4]); \
__m128i bx##n##0 = _mm_set_epi64x(h##n[3] ^ h##n[7], h##n[2] ^ h##n[6]); \
__m128i bx##n##1 = _mm_set_epi64x(h##n[9] ^ h##n[11], h##n[8] ^ h##n[10]); \
__m128i cx##n = _mm_setzero_si128(); \
__m128 conc_var##n; \
if (ALGO == Algorithm::CN_CCX) { \
conc_var##n = _mm_setzero_ps(); \
} \
VARIANT4_RANDOM_MATH_INIT(n);
template<Algorithm::Id ALGO, bool SOFT_AES>
inline void cryptonight_triple_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base();
# ifdef XMRIG_ALGO_CN_HEAVY
constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE;
constexpr bool IS_CN_HEAVY_XHV = ALGO == Algorithm::CN_HEAVY_XHV;
# else
constexpr bool IS_CN_HEAVY_TUBE = false;
constexpr bool IS_CN_HEAVY_XHV = false;
# endif
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 32 * 3);
return;
}
for (size_t i = 0; i < 3; i++) {
keccak(input + size * i, size, ctx[i]->state);
if (props.half_mem()) {
ctx[i]->first_half = true;
}
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[i]);
}
uint8_t* l0 = ctx[0]->memory;
uint8_t* l1 = ctx[1]->memory;
uint8_t* l2 = ctx[2]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
CONST_INIT(ctx[0], 0);
CONST_INIT(ctx[1], 1);
CONST_INIT(ctx[2], 2);
VARIANT2_SET_ROUNDING_MODE();
if (ALGO == Algorithm::CN_CCX) {
RESTORE_ROUNDING_MODE();
}
uint64_t idx0, idx1, idx2;
idx0 = _mm_cvtsi128_si64(ax0);
idx1 = _mm_cvtsi128_si64(ax1);
idx2 = _mm_cvtsi128_si64(ax2);
for (size_t i = 0; i < props.iterations(); i++) {
uint64_t hi, lo;
__m128i *ptr0, *ptr1, *ptr2;
CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0, conc_var0);
CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1, conc_var1);
CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2, conc_var2);
CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0);
CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1);
CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2);
CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0);
CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1);
CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2);
}
for (size_t i = 0; i < 3; i++) {
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[i]);
keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
}
}
template<Algorithm::Id ALGO, bool SOFT_AES>
inline void cryptonight_quad_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
# ifdef XMRIG_FEATURE_ASM
if (!SOFT_AES) {
switch (ALGO) {
case Algorithm::CN_GR_0:
case Algorithm::CN_GR_1:
case Algorithm::CN_GR_2:
case Algorithm::CN_GR_3:
case Algorithm::CN_GR_4:
case Algorithm::CN_GR_5:
if (cn_sse41_enabled) {
cryptonight_quad_hash_gr_sse41<ALGO>(input, size, output, ctx, height);
return;
}
break;
default:
break;
}
}
# endif
constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base();
# ifdef XMRIG_ALGO_CN_HEAVY
constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE;
constexpr bool IS_CN_HEAVY_XHV = ALGO == Algorithm::CN_HEAVY_XHV;
# else
constexpr bool IS_CN_HEAVY_TUBE = false;
constexpr bool IS_CN_HEAVY_XHV = false;
# endif
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 32 * 4);
return;
}
for (size_t i = 0; i < 4; i++) {
keccak(input + size * i, size, ctx[i]->state);
if (props.half_mem()) {
ctx[i]->first_half = true;
}
}
# ifdef XMRIG_VAES
if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) {
cn_explode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
cn_explode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem());
}
else
# endif
{
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[0]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[1]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[2]);
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[3]);
}
uint8_t* l0 = ctx[0]->memory;
uint8_t* l1 = ctx[1]->memory;
uint8_t* l2 = ctx[2]->memory;
uint8_t* l3 = ctx[3]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx[3]->state);
CONST_INIT(ctx[0], 0);
CONST_INIT(ctx[1], 1);
CONST_INIT(ctx[2], 2);
CONST_INIT(ctx[3], 3);
VARIANT2_SET_ROUNDING_MODE();
if (ALGO == Algorithm::CN_CCX) {
RESTORE_ROUNDING_MODE();
}
uint64_t idx0, idx1, idx2, idx3;
idx0 = _mm_cvtsi128_si64(ax0);
idx1 = _mm_cvtsi128_si64(ax1);
idx2 = _mm_cvtsi128_si64(ax2);
idx3 = _mm_cvtsi128_si64(ax3);
for (size_t i = 0; i < props.iterations(); i++) {
uint64_t hi, lo;
__m128i *ptr0, *ptr1, *ptr2, *ptr3;
CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0, conc_var0);
CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1, conc_var1);
CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2, conc_var2);
CN_STEP1(ax3, bx30, bx31, cx3, l3, ptr3, idx3, conc_var3);
CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
CN_STEP2(ax3, bx30, bx31, cx3, l3, ptr3, idx3);
CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0);
CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1);
CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2);
CN_STEP3(3, ax3, bx30, bx31, cx3, l3, ptr3, idx3);
CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0);
CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1);
CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2);
CN_STEP4(3, ax3, bx30, bx31, cx3, l3, mc3, ptr3, idx3);
}
# ifdef XMRIG_VAES
if (!SOFT_AES && !props.isHeavy() && cn_vaes_enabled) {
cn_implode_scratchpad_vaes_double(ctx[0], ctx[1], props.memory(), props.half_mem());
cn_implode_scratchpad_vaes_double(ctx[2], ctx[3], props.memory(), props.half_mem());
}
else
# endif
{
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[0]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[1]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[2]);
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[3]);
}
for (size_t i = 0; i < 4; i++) {
keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
}
}
template<Algorithm::Id ALGO, bool SOFT_AES>
inline void cryptonight_penta_hash(const uint8_t *__restrict__ input, size_t size, uint8_t *__restrict__ output, cryptonight_ctx **__restrict__ ctx, uint64_t height)
{
constexpr CnAlgo<ALGO> props;
constexpr size_t MASK = props.mask();
constexpr Algorithm::Id BASE = props.base();
# ifdef XMRIG_ALGO_CN_HEAVY
constexpr bool IS_CN_HEAVY_TUBE = ALGO == Algorithm::CN_HEAVY_TUBE;
constexpr bool IS_CN_HEAVY_XHV = ALGO == Algorithm::CN_HEAVY_XHV;
# else
constexpr bool IS_CN_HEAVY_TUBE = false;
constexpr bool IS_CN_HEAVY_XHV = false;
# endif
if (BASE == Algorithm::CN_1 && size < 43) {
memset(output, 0, 32 * 5);
return;
}
for (size_t i = 0; i < 5; i++) {
keccak(input + size * i, size, ctx[i]->state);
if (props.half_mem()) {
ctx[i]->first_half = true;
}
cn_explode_scratchpad<ALGO, SOFT_AES, 0>(ctx[i]);
}
uint8_t* l0 = ctx[0]->memory;
uint8_t* l1 = ctx[1]->memory;
uint8_t* l2 = ctx[2]->memory;
uint8_t* l3 = ctx[3]->memory;
uint8_t* l4 = ctx[4]->memory;
uint64_t* h0 = reinterpret_cast<uint64_t*>(ctx[0]->state);
uint64_t* h1 = reinterpret_cast<uint64_t*>(ctx[1]->state);
uint64_t* h2 = reinterpret_cast<uint64_t*>(ctx[2]->state);
uint64_t* h3 = reinterpret_cast<uint64_t*>(ctx[3]->state);
uint64_t* h4 = reinterpret_cast<uint64_t*>(ctx[4]->state);
CONST_INIT(ctx[0], 0);
CONST_INIT(ctx[1], 1);
CONST_INIT(ctx[2], 2);
CONST_INIT(ctx[3], 3);
CONST_INIT(ctx[4], 4);
VARIANT2_SET_ROUNDING_MODE();
if (ALGO == Algorithm::CN_CCX) {
RESTORE_ROUNDING_MODE();
}
uint64_t idx0, idx1, idx2, idx3, idx4;
idx0 = _mm_cvtsi128_si64(ax0);
idx1 = _mm_cvtsi128_si64(ax1);
idx2 = _mm_cvtsi128_si64(ax2);
idx3 = _mm_cvtsi128_si64(ax3);
idx4 = _mm_cvtsi128_si64(ax4);
for (size_t i = 0; i < props.iterations(); i++) {
uint64_t hi, lo;
__m128i *ptr0, *ptr1, *ptr2, *ptr3, *ptr4;
CN_STEP1(ax0, bx00, bx01, cx0, l0, ptr0, idx0, conc_var0);
CN_STEP1(ax1, bx10, bx11, cx1, l1, ptr1, idx1, conc_var1);
CN_STEP1(ax2, bx20, bx21, cx2, l2, ptr2, idx2, conc_var2);
CN_STEP1(ax3, bx30, bx31, cx3, l3, ptr3, idx3, conc_var3);
CN_STEP1(ax4, bx40, bx41, cx4, l4, ptr4, idx4, conc_var4);
CN_STEP2(ax0, bx00, bx01, cx0, l0, ptr0, idx0);
CN_STEP2(ax1, bx10, bx11, cx1, l1, ptr1, idx1);
CN_STEP2(ax2, bx20, bx21, cx2, l2, ptr2, idx2);
CN_STEP2(ax3, bx30, bx31, cx3, l3, ptr3, idx3);
CN_STEP2(ax4, bx40, bx41, cx4, l4, ptr4, idx4);
CN_STEP3(0, ax0, bx00, bx01, cx0, l0, ptr0, idx0);
CN_STEP3(1, ax1, bx10, bx11, cx1, l1, ptr1, idx1);
CN_STEP3(2, ax2, bx20, bx21, cx2, l2, ptr2, idx2);
CN_STEP3(3, ax3, bx30, bx31, cx3, l3, ptr3, idx3);
CN_STEP3(4, ax4, bx40, bx41, cx4, l4, ptr4, idx4);
CN_STEP4(0, ax0, bx00, bx01, cx0, l0, mc0, ptr0, idx0);
CN_STEP4(1, ax1, bx10, bx11, cx1, l1, mc1, ptr1, idx1);
CN_STEP4(2, ax2, bx20, bx21, cx2, l2, mc2, ptr2, idx2);
CN_STEP4(3, ax3, bx30, bx31, cx3, l3, mc3, ptr3, idx3);
CN_STEP4(4, ax4, bx40, bx41, cx4, l4, mc4, ptr4, idx4);
}
for (size_t i = 0; i < 5; i++) {
cn_implode_scratchpad<ALGO, SOFT_AES, 0>(ctx[i]);
keccakf(reinterpret_cast<uint64_t*>(ctx[i]->state), 24);
extra_hashes[ctx[i]->state[0] & 3](ctx[i]->state, 200, output + 32 * i);
}
}
} /* namespace xmrig */
#endif /* XMRIG_CRYPTONIGHT_X86_H */